
‘

1

Novel Strategies for Responsive Load Balancing in Cloud Applications

by Ratnadeep Bhattacharya

B.Tech in Electrical Engineering, August 2006, West Bengal University of
Technology

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of The George Washington University
in partial satisfaction of the requirements

for the degree of Doctor of Philosophy

February 23, 2024

Dissertation directed by

Dr. Gabriel Palmer
Associate Professor of Computer Science

The School of Engineering and Applied Science of The George Washington

University certifies that Ratnadeep Bhattacharya has passed the Final

Examination for the degree of Doctor of Philosophy as of February 23, 2024.

This is the final and approved form of the dissertation.

Novel Strategies for Responsive Load Balancing in Cloud Applications

Ratnadeep Bhattacharya

Dissertation Research Committee:

Dr. Gabriel Palmer, Associate Professor of Computer Science,
Dissertation Director

Dr. Rahul Simha, Professor, Committee Member

Dr. Timothy Wood, Associate Professor, Committee Member

Dr. Howie Huang, Professor, Dept of Electrical and Computer En-
gineering, The George Washington University, Committee Mem-
ber

ii

© Copyright 2024 by Ratnadeep Bhattacharya
All rights reserved

iii

Dedication

Education is not the filling of a pail, but the lighting of a fire!

iv

Acknowledgments

I would like to thank Dr. Timothy Wood for his guidance and patience

over the last few years as I made my way to this point.

I would also like to thank my wife, Deepa Rajappa, without whose un-

wavering support, sacrifices and encouragement, this wouldn’t have been

possible. This achievement is as much hers as it is mine.

Finally, I would like to thank my kids, Ayush and Daksh Bhattacharya,

who allowed us to skip innumerable tubs of ice cream.

v

Abstract

Novel Strategies for Responsive Load Balancing in Cloud Applications

Recent years have witnessed a substantial surge in cloud adoption, fueled

by architectural shifts and the emergence of applications tailored for edge

devices. Cloud-deployed applications, typically following the microservices

architecture pattern, break down large monolithic structures into smaller,

independent components known as microservices. While this approach

enhances development flexibility and deployment agility, it introduces an

internal network within the application. Consequently, load balancing

becomes imperative among microservices, creating both a bottleneck and a

potential single point of failure in communication.

To address these challenges, the distributed client-side load balancer

has been introduced. This architectural shift prompts the adaptation of

load balancing algorithms from single-node centralized configurations to

the distributed client-side paradigm. However, this transition poses chal-

lenges, particularly for dynamic algorithms like Least Connection. While

derived from well established and even nearly optimal algorithms like Join-

the-Shortest-Queue (JSQ), these algorithms mostly depend on the avail-

ability of accurate and current backend state information, which is

missing in distributed client side algorithms. This discrepancy ham-

pers its effectiveness in distributed client-side scenarios.

In this work, we establish that load balancing algorithms, transposed

from the centralized load balancer world, fail to hold up the same properties

and actually hamper performance. We recognize that these challenges are

unique and the obvious solution is to regain the information lost. The most

common approaches for that are to either build centralized state or to pass

vi

messages between the load balancers. However, both those solutions become

nearly impossible to scale to applications spanning tens of thousands of

microservices over data centers spread geographically. Thus we propose that

"distributed client-side load balancing" is a distinct subfield within the

broader domain of load balancing that requires further exploration. More

specifically, in this work we:

• Build algorithms that use feedback mechanisms to rectify the infor-

mation loss in distributed load balancing that most algorithms rely

on.

• Enable upstream nodes to manage their own performance.

• Enable the system as a whole to quickly react to overload conditions.

Our results show that for most applications types, our algorithms can

reduce response time variability over current state-of-the-art by 2-4

times and 99th percentile latency by about 2 times.

Moreover, a new wave of applications operates on edge devices, where

one set generates inputs interpreted by cloud-based services, triggering

actions on other edge devices. Such applications demand asynchronous

connectivity while adhering to predefined time-bound response require-

ments. Traditional asynchronous application designs, in the absence of

any temporal bound on message delivery, struggle to ensure response

time guarantees. While it is easy to introduce load balancing here to extract

better performance, most of these applications need to maintain a state in

the flow of their messages. Hence the goal in this part of our work is find a

balance between loss of performance and the cost of rebuilding state in the

flow of messages. Towards that goal, we propose and discuss:

vii

• Methods that allow us to incorporate synchrony within an asyn-

chronous network.

• Mechanisms to rebuild state split from moving streams between

multiple leaders, that is required for the above.

• Algorithm that can handle dynamically changing load whose charac-

teristics are unknown ahead of time.

Our results in this area show that 99th percentile latency can be reduced

by as much as 73%. More importantly, we found that in our experiments

the latency profile remained nearly constant when varying the service cost,

whereas Apache Kafka’s latency increased super-linearly.

viii

Table of Contents

Dedication iv

Acknowledgments v

Abstract vi

List of Figures xiii

Preface xiv

Chapter 1: Introduction 1
1.1 Background Knowledge . 5

1.1.1 Microservices Architecture 6
1.1.2 Service Mesh . 8
1.1.3 Event Driven Architecture 9

1.2 Projects . 11
1.2.1 Mu: An Ingress Load Balancer 15
1.2.2 BLOC: A sidecare Load Balancer 16
1.2.3 SMALOPS: A Load Balancer for Asynchronous Appli-

cations . 17

Chapter 2: Background 20
2.1 Microservices . 20

2.1.1 Centralized Load Balancing vs Distributed Client Side
Load Balancing . 22

2.2 Optimal Centralized Load Balancing 23
2.2.1 Microservice Communication Patterns 26

2.3 Asynchronous Communication 26

Chapter 3: Related Work 30
3.1 Load Balancing for Synchronous Services 30
3.2 Load Balancing for Asynchronous Services 34

Chapter 4: Mu: Ingress Load Balancing in Edge Systems 36
4.1 Introduction . 36
4.2 Background . 37
4.3 System Design . 39

4.3.1 Metrics . 40
4.3.2 Load Balancer . 45
4.3.3 Load Balancer Algorithm 46

4.4 Evaluation . 51
4.4.1 Overall Mu Performance 53

ix

Chapter 5: BLOC: Balancing Load with Overload Control in Mi-
croservices Architectures 56

5.1 Introduction . 57
5.2 Background . 60
5.3 Least Connection Analysis 69
5.4 System Design . 73

5.4.1 Confidence Chips . 75
5.4.2 Client Side Backoff and Retries 77
5.4.3 Server Selection . 78
5.4.4 Server Capacity . 80

5.5 Implementation and Experimental Setup 81
5.5.1 Customizable Microservice Generation 81
5.5.2 Sidecar Proxies . 82
5.5.3 Control Plane . 83
5.5.4 Test Bed Setup . 83
5.5.5 Workload . 84

5.6 Evaluation . 84
5.6.1 Experimental Setup 84
5.6.2 BLOC Overall Performance 85
5.6.3 Benefits of Different BLOC Components 89
5.6.4 BLOC Under Bursty Workloads 90
5.6.5 Handling of New Resources 92
5.6.6 A Real Variable Cost Backend Application 93
5.6.7 Low Backend Service Cost 95
5.6.8 BLOC vs Least Connection for a complete microser-

vices chain . 95
5.6.9 Impact of BLOC Parameters 96
5.6.10BLOC Performance with Variable Service Cost 97

5.7 Related Work . 97
5.7.1 Load Balancing . 98
5.7.2 Overload Control . 98
5.7.3 Load Balancing with Server Feedback 99

5.8 Conclusions . 99

Chapter 6: Load Balancing and Generalized Split State Recon-
ciliation in Event Driven Systems 102

6.1 Introduction . 103
6.2 Background and Motivation 106
6.3 System Design . 109

6.3.1 Hot Key Analysis . 113
6.3.2 Stream Balancing . 113
6.3.3 Stream Order . 116
6.3.4 Stateful Consumers 121
6.3.5 Hierarchical Gateways 122
6.3.6 State . 123

x

6.4 Implementation and Experimental Setup 124
6.4.1 Hierarchical Gateways 125
6.4.2 Second Level Gateway 125
6.4.3 A Side Note on the implementation of the Lossy Count-

ing Algorithm . 126
6.4.4 Control Plane . 126
6.4.5 Consumers . 127

6.5 Evaluation . 127
6.5.1 Experimental Setup 127
6.5.2 SMALOPS Overall Performance 128

6.6 Related Work . 131
6.7 Conclusions and Future Work 134

Chapter 7: Thesis Conclusion 135
7.1 Summary . 135
7.2 Future Work . 136

Bibliography 138

xi

List of Figures

2.1 Monolith . 21
2.2 Microservices . 21
2.3 Sidecar . 23
2.4 JSQ . 24
2.5 LC . 25
2.6 LCPerf . 27

4.1 Mu Overview. 40
4.2 %age Reduction in absolute error for workloads with > 100K

invocations . 44
4.3 Mu’s load balancer vs. Least Connection load balancer: Mu

reduces tail latency across all load levels. 47
4.4 Mu takes advantage of a newly added pod more quickly: shifting

load, improving both mean (horizontal lines) and variance in
response time more . 49

4.5 Response time CDF for 3 frameworks for Workload 1 (left); Work-
load 2 (right; only partial CDF for Concurrency) 51

4.6 Time series of Response Time for Mu, RPS, and Concurrency (Top:
Workload 1; Bottom: Workload 2) 52

5.1 A multi-tier application built from Monolithic services (top) can be
decomposed into microservice components (bottom), potentially
improving development practices, but complicating the applica-
tion topology. Sidecar load balancers (green circles) are deployed
adjacent to each microservice component to route requests to
downstream nodes. 58

5.2 LeastConn only has information about outgoing requests leaving
a sidecar, not the actual queue lengths at the backend nodes. . 63

5.3 Changing from 1 to 40 frontends causes a significant increase in
the range of response times and tail latencies. 64

5.4 Using Redis to provide a global view of backend state makes the
response time distribution nearly identical to having a single
centralized load balancer (green and orange lines overlap), and
similarly reduces the variation in load across backends. 65

5.5 Using AQM to drop requests early helps the tail, but not the
head of the distribution, suggesting backends are still not evenly
utilized. 68

5.6 Simulating JSQ vs Least Connection shows how waiting time
rises with the number of load balancers. 70

5.7 LC (top) sees both higher and more variable queue lengths than
JSQ (bottom) over time . 71

5.8 Experimental Setup . 83

xii

5.9 BLOC (Cap=10) provides a substantially tighter response time
distribution by avoiding incast problems and applying careful
admission control . 85

5.10 BLOC (Cap=10) provides a substantially tighter response time
distribution by avoiding incast problems and applying careful
admission control . 87

5.11 Sensitivity to capacity and impact on load imbalance 88
5.12 The combination of all BLOC components ensures a tight re-

sponse time distribution while minimizing request drops 91
5.13 90th percentile response time (Left-axis bars) and dropped re-

quests (Right-axis lines) with Poisson load generated at different
rates . 92

5.14 BLOC and Least Connection behavior when adding new resources
to the cluster . 93

5.15 BLOC, JSQ vs Least Connection for applications with different
service costs . 94

5.16 BLOC, JSQ vs Least Connection for a complete chain 95
5.17 Impact of Different Values of Capacity - 90th percentile response

time (Left-axis bars) and dropped requests (Right-axis lines) with
Poisson load generated at different rates 96

5.18 Dynamic and Static BLOC vs Least Connection Variable Service
Cost . 97

6.1 An example of an asynchronous architecture. IoT devices send
messages to edge clouds. The edge clouds in turn forward those
messages messages to cloud gateways (CGW) which forward them
to Kafka brokers to be consumed by some consumer service. . 103

6.2 Message Queuing System . 106
6.3 Message Sets . 117
6.4 Message Set Header . 118
6.5 Message Set Migration . 119
6.6 Consumer side protocol . 120
6.7 Queuing Delay Comparison . 128
6.8 99%ile Queuing Delay Comparison 129
6.9 Performance improvement with SMALOPS is realised earlier . . 130
6.10 Impact of Threshold Definition on Latency 131
6.11 Kafka vs SMALOPS under dynamic load conditions 132

xiii

Preface

In the ever-evolving landscape of cloud computing and microservices

architectures, this work embarks on a journey to unravel the intricacies

of load balancing — a pivotal aspect that not only underpins the seamless

operation of distributed systems but also plays a crucial role in the domain

of traffic engineering. As organizations increasingly embrace cloud-first

strategies and microservices patterns, the need for efficient load balanc-

ing becomes paramount for optimizing resource utilization by intelligently

managing network traffic flows.

The genesis of this research lies in the recognition of a gap - traditional

load balancing algorithms, honed in the monolithic era, failing to serve

today’s more varied and convoluted requirements. Modern distributed ap-

plications extend all the way from the almighty cloud to the puny embedded

devices, often even connecting the two. They have forced software and

infrastructure engineers to rethink their deployment strategies, giving rise

to the “microservices" architecture and the proliferation of asynchronous

communication alongside the more established client-server models. As

distributed systems rose from obscurity to claim its righful place as the

successor of the famed “Moore’s Law", modern computing systems entered

a brave new phase. Unfortunately though, it seems that not many noticed

the age-old load balancing algorithms cracking under the pressure.

My thesis points a finger at some of these ever-widening cracks. Through

a series of carefully crafted projects — Mu, BLOC, and SMALOPS — this

work not only identifies the shortcomings in existing approaches but also

charts a course toward novel solutions designed specifically for this new

landscape and the intricacies of modern traffic engineering.

Acknowledging the collaborative nature of research, I extend my gratitude

xiv

to the mentors, colleagues, and contributors who have been instrumental

in shaping this work. Their insights, feedback, and support have enriched

the depth and breadth of the exploration undertaken.

The narrative unfolds through a detailed examination of each project

— Mu, with its focus on optimizing load balancing in response to server

heterogeneity; BLOC, navigating the challenges of distributed client-side

load balancing and its implications; and SMALOPS, venturing into the

intricate realm of load balancing in asynchronous applications. Each project

contributes a unique perspective to the overarching theme, collectively

presenting a holistic view of load balancing in the modern cloud services

era.

As you traverse the pages that follow, I invite you to join me in this

exploration, where challenges become opportunities, traditional boundaries

are questioned, and innovative solutions emerge. May this work not only

contribute to the academic discourse but also serve as a guidepost for

practitioners navigating the dynamic landscape of modern computing and

traffic engineering.

Ratnadeep Bhattacharya

Feb, 2024

xv

Chapter 1: Introduction

Amidst the dynamic evolution of cloud computing, a transformative

paradigm has emerged, reshaping the operational dynamics of organiza-

tions. This paradigmatic shift involves relinquishing the reins of infras-

tructure operation and management—encompassing critical elements such

as compute, memory, network, and storage—from internal IT departments

to nimble and specialized cloud providers. This strategic realignment is

not merely a procedural adjustment but a pivotal transformation that lib-

erates organizations, allowing them to channel their focus and resources

toward the very core of their business competencies. Liberated from the

intricacies of day-to-day infrastructure maintenance, organizations can now

chart a course toward innovation, agility, and unparalleled efficiency. This

delegation heralds a new era where the cloud becomes the cornerstone of

operational prowess, enabling enterprises to navigate the complexities of

the digital landscape with unprecedented flexibility and responsiveness.

The last decade has witnessed a formidable wave of innovation, with in-

dustry titans like Amazon Web Services (AWS), Google Cloud, and Microsoft

Azure at the forefront, crafting resilient and impregnable cloud platforms.

This technological evolution, coupled with the symbiotic integration of or-

chestration solutions such as Kubernetes [1], Knative [2], proxies like Envoy

[3], and sophisticated service meshes exemplified by Istio [4] and Linkerd [5],

has heralded a transformative era. This era seamlessly paves the way for

the deployment of applications in the cloud, setting the stage for a paradigm

shift in deployment strategies. Notably, major industry players such as

Netflix, Pinterest, Twitter, and PayPal [6] have embraced this tide, adopting

1

"cloud-first" or even "cloud-only" deployment strategies. This strategic em-

brace marks a profound endorsement of the agility, scalability, and resilience

afforded by the cloud, signaling a resounding shift in how organizations

conceptualize and execute their digital strategies.

At the core of cloud environments lies a dynamic scalability that em-

powers infrastructure to gracefully expand or contract in response to the

undulating tides of workload fluctuations. This inherent capability under-

scores the critical imperative for a meticulous approach to "right sizing"

infrastructure — an artful calibration aimed at optimizing operational expen-

diture (opex). Operating within this operational range, where infrastructure

is compelled to function at or near its maximum capacity, accentuates the

need for an intricate dance of load distribution among service instances.

This dance, a nuanced choreography, becomes the linchpin in orchestrating

operational efficiency, ensuring resources are harnessed with precision to

meet the demands of the ever-shifting landscape of workloads.

Microservices architecture emerges as a prevailing pattern for the deploy-

ment of cloud applications. Under this paradigm, each facet of business

logic assumes the form of a standalone service, deployed as replicas us-

ing individual virtual machines (VMs) or containers. These services then

intricately communicate to collectively create the overarching application

functionality, a stark departure from earlier practices that amalgamated

closely related functionalities into single applications.

The proliferation of edge devices, spanning from ubiquitous mobile

phones to intricate IoT (Internet of Things) devices, has been instrumental

in giving rise to a distinctive class of applications. Traditionally hosted

on cloud infrastructure, these applications exhibit a data ingestion model

wherein information is gathered from a specific set of sources. Subsequently,

2

this raw data undergoes a transformative process within the cloud service,

culminating in the creation of actionable items tailored for consumption

by an entirely different set of devices. In this context, source devices re-

main indifferent to the fate of data once dispatched to the cloud service.

Given the minimal resource footprints of edge devices, the ultimate goal

is often to maximize the handling of "events," necessitating the utilization

of asynchronous communication. However, many of these applications

have a stringent temporal dimension that delineates a critical requirement,

stipulating a predefined time frame between the instantiation of data gener-

ation and the subsequent reception of the corresponding action item by the

designated destination devices. This temporal imperative underscores the

delicate balance that must be struck between the agility of asynchronous

communication and the imperative for timely action.

Within the domain of asynchronous communication, dominant patterns

invariably lean on a message bus to facilitate the exchange of information

regarding events between source devices and the cloud application. Despite

the widespread adoption of this paradigm, it is noteworthy that all major

message buses pivot on the foundational concept of eventual consistency.

In fact, asynchronous communication itself is prevalently concerned with

“correctness" rather than temporal bounds on service. This prevailing

approach, while offering advantages in certain contexts, particularly in

terms of flexibility, introduces a notable challenge: the inability to provide

definitive constraints on processing times. The consequence of this reliance

on eventual consistency is the emergence of a critical challenge with regards

to establishing a well-defined temporal boundary between the moment

of data generation and the subsequent reception of action items. This

challenge arises from the inherent variability in processing times dictated

3

by the eventual consistency model, which, by its nature, eschews rigid

temporal guarantees. Consequently, reconciling the need for asynchronous

communication with the imperative for timely action becomes a nuanced

pursuit, calling for innovative solutions to navigate this intricate terrain.

This research endeavors to unravel the intricate dynamics of load

balancing within microservices architectures, shedding light on the

prevalent fallacies that permeate existing methodologies and their

profound repercussions on response times across a spectrum of con-

texts. A critical aspect under scrutiny is the pervasive inclination to trans-

plant successful algorithms from the centralized (monolithic) domain into

the microservices realm. This practice, upon closer examination, unveils

inherent inefficiencies that inflict severe degradation upon response times.

The crux of this inefficiency is traced back to the highly distributed nature of

information within the microservices domain, exacerbated by an augmented

heterogeneity in the service capacity of backend systems. This heterogeneity,

a consequence of various factors such as diverse hardware configurations

in resource-constrained environments and interference stemming from a

high VM/container-to-server ratio — referred to as the packing ratio —

exerts a significant impact on the efficacy of load balancing algorithms.

The ensuing challenge lies in addressing this distributed and heteroge-

neous landscape, necessitating innovative solutions tailored to the unique

intricacies of microservices architectures.

In response to the distinctive demands posed by the microservices pat-

tern, this research introduces a suite of specialized systems meticulously

crafted to navigate the intricate challenges inherent in this architectural

paradigm. A pivotal revelation surfaces during this exploration—the recog-

nition of "distributed load balancing" as a distinctive field in its own

4

right, warranting dedicated and nuanced research to comprehend its com-

plexities fully. Simultaneously, the research illuminates the preeminence of

straightforward yet effective feedback-based load balancing algorithms over

the established "state-of-the-art," marking a significant leap forward in opti-

mizing microservices performance. This dual emphasis on defining a new

research frontier and presenting practical advancements underscores

the research’s comprehensive and forward-thinking contribution to

the field of load balancing in microservices architectures.

In a strategic shift towards the realm of asynchronous applications,

the research reaches its apex with a groundbreaking project. This en-

deavor involves the construction of a sophisticated framework, strategically

positioned atop Apache Kafka — a widely adopted message bus. The pri-

mary objective of this project is to one, use intelligent load balancing

algorithms to reduce message queuing times - effectively building a

notion of synchrony into asynchronous systems, and two, to discuss

some of the controls needed to reconcile stream state that was split

by load balancing. This final project, serving as the culmination of the

research journey, not only adds a significant layer to the existing body of

knowledge but also underscores the indispensable role of load balancing in

optimizing the performance of asynchronous applications as well.

1.1 Background Knowledge

A significant chunk of modern applications are developed and deployed

using the microservices pattern. These microservices communicate using

some “service mesh" or “message bus", using what is known as the “event

driven architecture". Since our work focuses on these patterns, we will

focus on formally defining these and related ideas in this section.

5

1.1.1 Microservices Architecture

Microservices architecture is a design approach for developing software

applications as a set of small, independently deployable services. In con-

trast to traditional monolithic architectures, where an entire application is

developed as a single, tightly integrated unit, microservices break down an

application into a collection of loosely coupled services. Each microservice

represents a specific business capability and can be developed, deployed,

and scaled independently.

Key characteristics of microservices architecture include:

Modularity: The application is divided into small, self-contained ser-

vices, each responsible for a specific function or feature.

Independent Deployment: Microservices can be developed and de-

ployed independently of each other. This allows for more frequent updates

and releases, reducing the risk associated with changes.

Loose Coupling: Services are independent entities that communicate

with each other through well-defined APIs (Application Programming Inter-

faces). This loose coupling makes it easier to replace or upgrade individual

services without affecting the entire system.

Scalability: Each microservice can be scaled independently based on

its specific usage patterns, allowing for more efficient resource utilization.

Resilience: Failure in one microservice does not necessarily bring down

the entire application. The system can gracefully degrade, with other ser-

vices continuing to function.

Technology Diversity: Different services within a microservices ar-

chitecture can be implemented using different technologies, tools, and

programming languages, based on the specific requirements of each service.

Autonomous Development Teams: Microservices architecture often

6

aligns with an organizational structure where small, cross-functional teams

are responsible for individual microservices. This autonomy enhances

development speed and flexibility.

Continuous Integration and Deployment (CI/CD): The independent

nature of microservices facilitates the adoption of CI/CD practices, enabling

automated testing, integration, and deployment.

Despite these advantages, microservices architecture also introduces

challenges, such as increased complexity in managing distributed systems,

inter-service communication, and data consistency across services.

Generally, the application is deployed as a group of services. Each service,

in turn, is a cluster of instances or “pods" that run the same business logic.

These services are glued together using either synchronous or asynchronous

communication patterns. In synchronous applications, the services are

ordered in “layers", containing one or more dependent services, with each

layer of services making requests to the next layer. While the services within

a layer may only be partially ordered, the layers themselves tend to have a

total ordering. With the asynchronous application, services are far more

loosely coupled and a total ordering may or may not exist.

Typically, entry to a microservices based application is through an

“ingress" gateway that load balances incoming requests to a frontend service.

In case of synchronous applications, the layers talk to each other directly

sending a request and waiting for the corresponding response. In such

cases, the “downstream" service nodes (the client or the requester) contain

a “sidecar", a secondary node operating in the same network namespace,

load balancer (client side). These load balancers select “upstream" service

nodes (service provider instance or “pod") to which to direct individual re-

quests. In the case of asynchronous applications, the services use a fire

7

and forget model. In this model, the services themselves do not care about

the response and the request is simply sent to a message bus that is used

to glue services together. Since the message bus forms its own separate

application with its own ingress gateway, the client side distributed load

balancer is done away with. The load balancing, however, moves inside the

message bus application.

1.1.2 Service Mesh

A service mesh is a dedicated infrastructure layer that facilitates commu-

nication, management, and control between microservices in a distributed

application. It acts as a configurable, low-latency communication fabric

that allows services to communicate with each other reliably, securely, and

efficiently. Service meshes provide a set of features to address common

challenges associated with microservices architectures, such as service

discovery, load balancing, security, observability, and traffic management.

Key features of a service mesh include:

Service Discovery: Service meshes automate the process of service

discovery, allowing microservices to locate and communicate with each

other without hard-coded addresses. This dynamic discovery simplifies the

deployment and scaling of microservices.

Load Balancing: Service meshes implement load balancing strategies to

distribute incoming requests across multiple instances of a service, ensuring

optimal utilization of resources and improved fault tolerance.

Security: Service meshes enhance security by providing features like

encryption (often through mutual TLS), authentication, and authorization.

They can enforce policies to control which services are allowed to communi-

cate and under what conditions.

8

Observability: Service meshes offer tools for monitoring and logging,

allowing developers and operators to gain insights into the behavior and

performance of microservices. Metrics, logs, and traces help diagnose issues

and optimize system performance.

Traffic Management: Service meshes enable sophisticated traffic man-

agement capabilities, including A/B testing, canary releases, and blue-green

deployments. These features allow controlled rollout of new features and

updates to minimize risks.

Circuit Breaking: To prevent cascading failures, service meshes can

implement circuit-breaking mechanisms. If a service becomes unhealthy or

unresponsive, the service mesh can intelligently limit the flow of requests

to that service, preserving overall system stability.

Retry Mechanisms: Service meshes can automatically handle retries

for failed requests, reducing the impact of transient failures and improving

the overall resilience of the application.

Service meshes are particularly valuable in large, complex microservices

architectures, where the ability to manage communication and interactions

between services is crucial for maintaining a reliable and secure application.

1.1.3 Event Driven Architecture

Event-driven architecture (EDA) is a software design paradigm that em-

phasizes the production, detection, consumption, and reaction to events that

occur within a system. An event is a significant change in state or a notable

occurrence that a system can detect and respond to. In an event-driven

architecture, the flow of the application is determined by events, promot-

ing loose coupling between components and allowing for better scalability,

flexibility, and responsiveness.

9

Key components and concepts of event-driven architecture include:

Events: Events are notifications or signals that something of interest has

happened. These can include user actions, system notifications, or changes

in data. Events are typically categorized into two types: commands (indicat-

ing a request for a specific action) and events (indicating that something

has happened).

Event Producers: These are components or services responsible for

generating and emitting events when a relevant state change occurs. Event

producers publish events to an event bus or a similar mechanism that

facilitates communication.

Event Bus: An event bus is a communication channel that allows event

producers to publish events, and event consumers to subscribe and re-

ceive those events. It acts as an intermediary through which events are

transmitted between components.

Event Consumers: These are components or services that subscribe

to specific events of interest. When an event occurs, the event consumer

reacts by performing some action. Event consumers are often decoupled

from event producers, allowing them to operate independently.

Decoupling: One of the core principles of event-driven architecture is

decoupling, which means that components are independent and unaware

of each other. Changes in one component do not directly affect others. This

promotes modularity and flexibility, making it easier to modify or replace

components without disrupting the entire system.

Scalability: Event-driven architectures are inherently scalable. New

services can be added without impacting existing components, and the

system can easily adapt to changes in load by distributing events efficiently.

Asynchronous Processing: Events are often processed asynchronously,

10

meaning that the sender and receiver are not required to interact in real-time.

This asynchronous nature improves system responsiveness and allows for

better handling of intermittent failures.

Event Sourcing: Event sourcing is a related concept where the state of

an application is determined by a sequence of events rather than the current

state. This approach provides a comprehensive audit trail of changes and

enables the reconstruction of system state at any point in time.

In the microservices domain, event-driven patterns are common in mi-

croservices to enable communication between independently deployed ser-

vices.

1.2 Projects

In the course of our work, we discovered that the load balancing algo-

rithms, in both service meshes (synchronous communication) and event-

driven architectures (asynchronous communication), lead directly to the

over-provisioning of resources. When deployed in cloud environments, this in

turn leads to higher operating cost and/or lower performance. Furthermore,

to the best of our knowledge, even the research community seems oblivious

to this particular impediment. Thus, it is our belief that distributed load

balancing in microservices is an hitherto unexplored field of research.

The major problems that plague load balancing in the microservices

domain are:

• Server Heterogeneity: In distributed systems, the “pods" (group of

logically linked containers) can be scheduled on different physical

server with varying resources and interference (due to the number of

pods scheduled on the same physical server). This is especially true in

an edge system which might deploy a bunch of low-cost servers whose

11

resource availability can vary wildly. In such cases, despite being

deployed from the same configuration, pods can have very different

performance profiles.

• Distributed Information: In service meshes, the load balancer is

typically on the client or request side. This is done in order to avoid

single point of failures and enable the system to scale. However, when

multiple client load balancers make requests independently to the

same set of backend pods, the information gets distributed between

them. As such, client load balancers’ ability to make correct decisions

suffer severely. In fact, this degradation in system performance is

proportional to the number of clien load balancers present in the

system.

• Eventual Consistency: Beyond these, event driven applications fur-

ther suffer from their eventual consistency designs. Eventual consis-

tency asserts that a system will “eventually" converge to the same state

by implementing some form of reconciliation. This is a weaker form

of consistency, typically meant for systems where strong consistency

poses significant challenges.

In order to intelligently discuss performance in any kind of system, we

have to define performance. This entails selecting metric(s) to quantify

performance. This is where the design of algorithms become tricky. Some

of the major metric classes in this regard are memory, CPU and I/O. Most

systems use one or the other, depending on the application and combining

more than one into a single metric is believed to be tricky, though we are not

aware of any specific study in this regard. This led us to investigate systems

using processing time of an application, which we believe subsumes most

12

major metric classes. In our work we define processing time as a “dead-

line" before which an application can finish processing a particular “job".

Practically though, this definition is dependent on a predefined notion of a

“deadline". Hence, we use a simpler metric while building our systems - we

aim to guarantee each “job" equal time on the system. We resolve this

with the idea of remaining capacity on each backend node. This “remain-

ing capacity" is defined as the difference between the number of concurrent

jobs the backend can handle minus the number of jobs currently in its

queue. Each project, though, implements this idea slightly differently:

• “Mu" estimates the time it takes for each backend node to process a

job. It then uses this “capacity" estimate to predict the time it will

take for that backend to process a new job, given the number of jobs

already in its queue.

• “BLOC", on the other hand, assumes the “capacity" of each backend

to be the same by virtue of being defined in a more standardized

environment than “Mu". However, since BLOC operates in a more

distributed environment, it passes the estimation responsibilities to

the backend nodes themselves. The backend nodes then can indicate

“remaining capacity" back to each load balancer they interact with.

• “SMALOPS" actually works slightly differently. It eschews the notion

of “capacity" and simply focuses ensuring equalizing the load on each

processor.

It should be noted though that this approach is not entirely unique to

this work. The breakwater paper, [7], works with very small (nanosecond

scale) requests that essentially uses the first request to a particular backend

13

node as a registration mechanism on that node. Thus allowing the node to

provide feedback about “remaining capacity".

In our work we have proposed three systems, Mu [8], BLOC [9] and

SMALOPS [10] to investigate the problems associated with each of the above

discussed areas of load balancing and to propose possible solutions to such

problems. The Mu system demonstrates issues with the load balancing

of ingress load balancers. This is similar to traditional load balancing

but the investigation focuses on edge computing systems where service

capacities of the nodes vary. The BLOC system showcases problems with

distributed client side load balancing identifying this area as a separate

and new subspace of load balancing requiring further research. Both of

these systems propose possible solutions that are based on incorporating

feedback from backend nodes. We showcase that in both these areas lack

of information about backend states cause significant deterioration of load

balancing results. Our main contribution in this area is to show that the

advent of different cloud computing environments and the microservices

architecture have created a novel problem that existing load balancing

algorithms and systems are ill-equipped to respond to.

In the synchronous microservices world, the Least Connection load

balancing algorithm is considered to be state of the art. This algorithm

works by maintaining a count of open connections to each of the backend

nodes and then selecting the backend with the least amount of such open

connections. A connection is considered open if a request has been sent

and the client is waiting for a response. In case of distributed client side

microservices, this algorithm can cause “herding" where every client side

load balancer send requests to the same backend, identified as the one with

the least amount of open connections, simultaneously. Herding has a large

14

negative impact on the overall response times. In order to protect against

this issue, current implementations of the least connection algorithm also

incorporate the power-of-two-random-choices [11], where two backends are

selected at random before comparing the number of open connections. When

compared against this version of the Least Connection algorithm, feedback

based load balancing algorithms have been found to have significantly lower

latencies.

We next turn our attention on asynchronous communication patterns.

Traditionally, systems using asynchronous communication pattern are gen-

erally able to tolerate significant processing delays, mainly due to the design

of modern message queues used to build asynchronous communication

systems. However, for many modern applications, requiring asynchronous

communication, this is not true anymore. While there has been significant

research in this area, most of it has been confined to load with known char-

acteristic over all time. Our contribution in this space is to demonstrate

that message queuing delays in asynchronous communication systems can

be significantly improved.

1.2.1 Mu: An Ingress Load Balancer

Our goal with the Mu load balancer was to improve the load balancer’s

response to server heterogeneity. Mu was tested against the Least Con-

nection algorithm by running them both on ingress load balancers and

thus both had access to complete information about all the backend nodes.

Mu was built to directly use the service capacity and queue length values

that was piggybacked from the backend nodes. The idea with Mu was to

optimize each request for the fastest possible response time. Mu achieved

the following:

15

• Optimize response time for each request thus improving tail latencies.

• Better load distribution leading to increase in system capacity.

• Ability to respond to underload conditions better.

While the greatest benefits of Mu are realized primarily in edge computing

environments, even traditional cloud environments can experience server

heterogeneity for a variety of reasons, thus making Mu applicable in cloud

environments as well.

1.2.2 BLOC: A sidecare Load Balancer

BLOC explores the efficiency of distributed client side load balancers in

synchronous applications. This pattern has emerged recently along with

the microservices pattern. The initial BLOC paper, [9], demonstrates that

state-of-the-art load balancing algorithms loose their desirable character-

istics when adapted for distributed client-side load balancers. The main

contribution of BLOC is in demonstrating a variety of methods by which

backend cluster nodes can send feedback to the load balancers and the

ways in which the load balancer can respond and incorporate that feedback.

Incorporating feedback into the load balancer is a particularly hard problem

since any information about the state of the backend cluster changes quickly

in the presence of requests arriving from multiple load balancers randomly

and continually altering the state of the backend cluster. The challenge

that BLOC addresses in the process is to keep the information “reasonably"

up-to-date without flooding the system with metadata messages and then

to use the that information intelligently while being cognizant that the

information becomes stale at unknown points of time.

BLOC’s focus is on correcting the loss of perspective in load balancers

16

that come from the information about backends becoming distributed. The

major building blocks of BLOC are overload controls, namely, Active Queue

Management (AQM) and Rate Limiting. AQM is used to modify the service

capacity estimate which is then used to drive the rate limiter on each

upstream service. With BLOC, we achieved the following:

• Built a feedback system between upstream and downstream services,

allowing upstream load balancers a better understanding of down-

stream load conditions.

• Use the improved understanding through feedback to get upstream

nodes rate limit themselves.

• React quickly to overload conditions and shift load away from such

backends.

We further extended BlOC, [12], with the following:

• A detailed analysis of algorithms in centralized vs distributed client

side load balancers providing a theoretical support to our claims.

• We improved upon our previous iteration of the BLOC algorithm.

• We also dove deeper into the parameter space of BLOC.

1.2.3 SMALOPS: A Load Balancer for Asynchronous Applications

Our final project is focused on load balancing load in asynchronous

or event driven applications. In these applications, microservices take

some action on their internal state, known as an “event", and generate a

notification of each event, a “message". The microservice then sends the

messages to a message bus. The message bus defines multiple “partitions"

17

(queues) to hold these message or event “streams" in order to allow for

capacity planning. Other microservices can subscribe to receive messages

from any other microservice from the message bus. A “stream" of such

events, often idenfied by a “key" emebedded in the metadata of the messages,

precipitate actions in subscriber microservices.

One of the main advantages of such applications is that the component

microservices by being completely decoupled from each other can, in theory,

scale indefinitely. With the message bus working as the glue between

services, each service can process messages, generating events, at their

own pace without choking up the pipeline. Such architectures, typically

depend on the “eventual consistency" model in regards to the overall state of

the application. This means that the typical asynchronous application has

no in-built guarantees in term of processing times. For example, it quite

common and acceptable for a retail banking application to take even a few

days to update its state, like current balance.

Many modern applications have IoT devices as both the source and

destination of messages. For example, an application might ingest data

from mobile phones and vehicular sensors in an area and create safety

recommendations for the different actors. The resource constrained nature

of the sensors mean that the asynchronous communication pattern is

the right architecture for this application. And it is obvious that such

applications need a significantly tighter upper bound on processing times

than eventual consistency.

Now due to this acceptance of eventual consistency, most message buses

only provide for very rudimentary load balancing algorithms that are most

often static in nature. Recent research, [13] [14] [15], has focused on

algorithms that are more dynamic in nature and attempt to efficiently group

18

keys so that stream to partition assignment is efficient. However, these

algorithms are load assignment algorithms rather than load balancing

algorithms. They assume that one, the load in each stream is always

unchanged and two, the number of streams remains constant throughout

the lifetime of the application. Both of these assumptions do not hold for

applications like the one described above. As such SMALOPS explores the

ways in which better load balancing in asynchronous applications can lead

to tighter processing times.

19

Chapter 2: Background

Traditionally software has always been developed and deployed as a few

tiers, mostly 2 or 3, of applications, figure 2.1. These applications, known as

“monoliths", themselves are developed as a single stack that incorporated

the entire business logic, end-to-end. The tiers are often deployed as a

cluster of individual nodes. As such, a load balancer needs to be deployed

in front of these tiers so as to assign load to the “best" node.

2.1 Microservices

As applications moved to the cloud, companies realised that a more

efficient deployment pattern is the microservices architecture. In this archi-

tecture, the monolith is broken down into components or microservices.

Each microservice typically implements a single function. This enables

each part of the application to be developed in a manner best suited to it.

It also allows for independent deployment and scaling of only the required

components leading to a much more efficient use of resources, figure 2.2.

However, moving from the monolith to microservices introduces the net-

work inside the application as it the microservices need to communicate

with each other. Generally that implies that microservices response times

can be slower than the corresponding monolith. Furthermore, the central-

ized load balancer, between services, has been identified as both a choke

point and a single point of failure in microservices architectures. As such,

the load balancer deployment pattern has also changed fundamentally.

20

Figure 2.1: Monolith Architecture

A2

A1

B2

B1

B3
B2

B3

Microservices

Figure 2.2: Microservices Architecture

21

2.1.1 Centralized Load Balancing vs Distributed Client Side Load Bal-

ancing

Load balancers in the microservices architecture are deployed in a dis-

tributed manner along with the services themselves in what is known as

the “sidecar" pattern, figure 2.3. In the microservices world, applications

are often deployed using the “container", [16], model. According to the con-

tainer runtime company, Docker, [17], a container is a “standardized unit

for development, shipment and deployment of software". For the purpose

of understanding our research, a container can be thought of a network

namespace, independent from that of the underlying physical or virtual

machine. According to Linux [18], a network namespace provides isolation

for networking resources [19]. Furthermore, multiple containers can share

namespaces, like the Kubernetes “pod" [1]. This allows multiple containers

to share the network, or other resources, between them. A “sidecar" is

a container that sits next to an application container, sharing the same

namespace in order to modify the application’s behavior in some way.

This change also essentially shifts the load balancer from “server side" to

“client side". With the centralized load balancer, all traffic from clients would

be directed to the load balancer. The load balancer would then redirect

the traffic, using some algorithm, to a backend cluster node, figure 2.1. In

the microservices architecture, this load balancer gets split up and moved

alongside client services as sidecars. Now each load balancer operates only

on the traffic outgoing from the service the load balancer is sitting next

to, figure 2.2. Thus multiple load balancers are now choosing the backend

service node independently and without sharing information between them.

These changes bring forth significant advantages:

22

Figure 2.3: Sidecar Load Balancer

• Application architectures are no more constrained by the centralized

load balancer which is both a single point of failure and a bottleneck.

• Application developers do not need to figure out how to subset the load

balancers, (subsetting refers to each load balancer handling requests

for only a subset of servers; this allows them to maintain long running

connections to these backends optimizing response time and resource

usage [20]), as each load balancer automatically maintains long term

TCP connections to back ends based on information derived from the

configuration.

• Application deployment is eased by packaging the application with the

load balancer.

2.2 Optimal Centralized Load Balancing

Join the Shortest Queue (JSQ) is a nearly optimal algorithm for cen-

tralized load balancers. JSQ maintains a running count of all the open

connections to each backend cluster node. Since it runs in a centralized

location, it has perfect information and as such each request is correctly

routed according to this policy, figure 2.4. This same policy has been

23

Figure 2.4: Join the Shortest Queue

adapted to the microservices world as the Least Connection (LC) algorithm,

figure 2.5. Least Connection follows the same policy as JSQ. However, since

LC is running at the client side, it can not see all the connections, from all

the other clients, on any of the backend cluster nodes.

However, in the microservice and serverless domains, there are two

deficits to the LC based approach:

• Even on, say, the ingress load balancer, which is effectively a central-

ized load balancer, under certain circumstances, like heterogeneous

hardware or interefence due to a high packing ratio, the least loaded

queue might not correspond to the fastest response time.

24

Figure 2.5: Least Connection

• Least Connection attempts to replicate JSQ using only locally available

information – there are no synchronization of decisions or sharing of

information. As such LC only operates on incomplete information and

we show that the analysis for JSQ does not hold for LC since the same

assumptions do not hold.s

While it is straightforward to realize the impact of non-homogeneous

platforms on JSQ, the impact of local information on multiple load balancers,

within the same service, using Least Connection is surprising.

Figure 2.5 shows that the availability of limited information can warp

Least Connection leading to erroneous decisions. In Figure 2.4, we note

25

that there is a single centralized load balancer routing requests to the

backends. In this case, this load balancer has global information about

the entire backend cluster. This allows the load balancer to figure out

which server is currently processing the least number of requests. However,

in Figure 2.5, for Least Connection, we see that there are multiple load

balancers routing requests to the same backend cluster. As such, each

load balancer has only a limited view of the state of the backend cluster.

Thus distributed load balancers, using algorithms that depend on global

information, are much more prone to making inaccurate decisions. Figure

2.6 shows the response time distribution for the Least Connection and

Random algorithms in the microservices architecuture. We can see that

Least Connection performs much better than Random in terms of the

response time distribution. Thus we argue that it is enough to compare

our results against LC and demonstrate that despite being considered the

state of the art, the Least Connection algorithm response time distribution

is significantly wider than optimal.

2.2.1 Microservice Communication Patterns

Finally, microservices architectures come in two sub patterns:

• Synchronous or RESTful services based on a request-response pattern.

• Asynchronous or event driven services, following event driven architec-

tures (EDA), based on messaging infrastructures.

2.3 Asynchronous Communication

Asynchronous applications follow a fire-and-forget model between their

components. This is typically because in these applications, notification

26

Figure 2.6: Least Connection vs Random

about certain changes get propagated through other components, if they

exist. When such an application ingests some piece of external data, this

event triggers an action, another event, at some component of the applica-

tion. This event, in turn, sends out a notification, a message, about the

component’s state change caused by this event. Such events and messages

can form a chain which ends when some predefined terminating condition

is met or the chain propagates through a predefined path through the

application. This logically connected chain of events and messages, from

the initial trigger to the changed end state is known as a “transaction".

Typically these applications operate on the principle of eventual consistency

[21]. Generally, eventual consistency applications do not make any guaran-

tees on transaction processing times. Let us consider one such traditional

application - a retail banking application that given an external financial

transaction updates the balance of the accounts involved. Anecdotal ex-

perience tells us that the account is updated any arbitrary time after the

27

financial transaction without a specific guarantee about the timeline.

The event driven or asynchronous services are especially lacking in

infrastructure to load balance properly. Popular message buses used in

EDA designs, like Kafka [22] and NSQ [23], only provide rudimentary load

balancing algorithms like Round Robin and Random. The overwhelming

assumption in message buses is a normally distributed workload and an

equality of consumers. However, there are several cases, like [24] and [25],

where services suffer from hot-key problems and need to devise custom

solutions.

There are several differences between these message buses. An impor-

tant one is that while some, like Kafka, support sticky sessions (a strict

ordering of events for stateful messaging), others, like NSQ, distribute mes-

sages randomly to consumers. Simpler message queues like RabbitMQ

[26] support slightly more advanced load balancing algorithms like “Fair

Dispatch” [27], where the queue only sends one message at a time to any

consumer. However, this only counters the differences in processing times

in consumers and not hot keys.

In distributed caching/database systems, hot key issues are resolved by

redirecting clients interested in the hot key to different replicas containing

the key. In contrast, event buses shard requests to a service (topic) into par-

titions, with a key-value structure, and enforce a strict one-to-one mapping

both between partitions and keys and between partitions and consumers

(subscribers). The combination of these mappings force users to either write

custom logic to assign specific partitions to specific consumers or redesign

the subscriber service.

We anticipate that our work will demonstrate that the load balancing

requirements of microservices are quite different from those of the mono-

28

lithic world. We also aim to show that the performance of load balancing

algorithms ported over from centralized load balancers suffer in unexpected

ways when deployed with microservices. We aspire to build a self-managing

feedback system between synchronous microservices to inform load balanc-

ing decisions. Finally, we intend build smarter algorithms for EDA systems

that can address hot key issues, especially in Kafka like event buses.

29

Chapter 3: Related Work

3.1 Load Balancing for Synchronous Services

Load Balancing is an old problem in computer science. There has been

a lot of work that has been done in this area over the past few decades.

The majority of this work has been focused on centralized load balancers

for monolithic applications. Some of the more popular algorithms are

“Random", which allocates resources based on a pseudo random number

generator, “Round Robin" (RR), which routes requests in a round robin

(sequentially with wrap-around) manner, “Least Loaded", which sends work

to the server which is using less of its resources than others, and “Join

the Shortest Queue" (JSQ), which allocates work to whoever has the least

number of requests currently being processed.

Gilly et al. [28] provides more details for the different load balancing

algorithms. Round Robin is a simple algorithm that works well for very

simple deployments where the servers and job sizes are also homogeneous.

However, it does not fare as well in the face of complex topologies and

heterogeneity. “Weighted Round Robin" can address server heterogeneity

through user configured weights but still cannot address heterogeneity in

job sizes or complex topologies. “Least Connection", an adaption of the

JSQ, popular in the microservices world, like JSQ, is a dynamic algorithm

that measures the number connections to each backend, at runtime, to

make its decisions. This ensures that Least Connection and JSQ take into

consideration job size heterogeneity without any manual intervention.

In the centralized load balancer world, Gupta et al. [29] proves that JSQ

is a nearly optimal algorithm and any other routing policy is unlikely to better

30

JSQ by more than 10%. This work assumes the backends are processor-

sharing, that is, all incoming work is immediately dispatched. And while

they consider backends serving static web pages, the processor sharing

assumption holds true for several other systems. The work also shows that

JSQ demonstrates near insensitivity to job size distribution. However, as we

will see, these properties do not hold for distributed algorithms like Least

Connection.

One more question we want to address here is that of the comparison

between Random and Least Connection. After all, Random will distribute

load between the backend servers irrespective of any heterogeneity con-

cerns. This property of the Random load balancer, though, is only true

asymptotically. Gupta et al. [29], Section 7, compares the first moments

(average) of the queue length for different load balancing algorithms (sim-

ulated) and shows that Random consistently has a high queue average in

their simulations. We also cite the results, [30], from a comparison done

by the Envoy [3] team, where they show that while Random performs well

asymptotically, they tend to have a high variance in how much load each of

the servers receive.

However, as we move from monolithic architectures with centralized load

balancers and global information to distributed microservices architectures

with its sidecar load balancers, we explore if Least Connection, the JSQ

derivative, is the best algorithm to use. We argue that as the centralized load

balancers gets broken down into several sidecars, centralized information

about the backends become distributed as well. This leads to distributed

algorithms making bad decisions. In our work, we use feedback from the

backend servers to correct this lack of perspective in distributed algorithms.

Kumar and Kumar, [31] points out, both overloading and underloading

31

are also big challenges in cloud computing. Furthermore, many cloud

environments, like edge clouds, need to deal with a high variance in their

capacities. Static load balancing algorithms require a deep knowledge

of the workload and the infrastructure. This implies a stability of the

infrastructure that is unavailable in cloud environments. As such, static,

rule based, load balancing algorithms are unlikely to fare well in cloud

environments. Dynamic load balancing techniques are more suitable to

cloud environments. These algorithms are flexible enough to respond to the

changing system dynamics and can also respond to overload situations by

transferring load to relatively underloaded servers. The typical approaches

with dynamic load balancers in cloud environments are to either maintain

a global store of information, a central node or system, or to maintain a

global state. In our work, we argue that both of these approaches limit the

scalability of the environment.

There also has been some work that has been done in the cloud comput-

ing environment. Here we cite two papers, that we consider to be represen-

tative within the scope of large distributed heterogeneous clusters, HALO

[32] and CHEETAH [33].

With the HALO load balancer, [32], the authors develop a system to esti-

mate server speeds and cluster servers of similar speed together, essentially

building mini homogeneous environments within the larger cluster. Once

this distinction can be made, the load balancing problem is one of building

a two level hierarchical load balancer using established simple algorithms.

The top level load balancer distributes load to the individual clusters propor-

tional to their mean server capacity. Within each of these mini-clusters, the

second level load balancer can distribute load using a simple algorithm like

Round Robin. The authors of this work correctly identify server capacity

32

to be an important parameter for dynamic distributed load balancers but

bypass the estimation issue, which is notoriously hard, by assuming these

capacities to be known.

In the CHEETAH load balancer, [33], the authors consider an additional

problem of maintaining state for per connection consistency (PCC). Inter-

estingly they do so by embedding “cookies" in the connection themselves

piggybacking vital information without adding to the network load. This

is an oft used technique within the larger cloud computing sphere but

deciding the information to be piggybacked is much more specific to the

problem being solved. CHEETAH forms a major discussion on the types

of information that need to be encoded into the connections and the ways

that information can be used. Another important contribution in this space

comes from Netflix’s Zuul [34] which uses piggybacked information to build

a distributed version of the Least Loaded algorithm.

Furthermore, our anecdotal experience suggests that both industry and

the scientific community generally consider Least Connection (modified

with Power of Two Random Choices [11]) and Random to be “good enough”

algorithms in microservices systems. Our experiments show the failures

of Least Connection, which have been, as mentioned earlier, surprising

at times. Considering the random algorithm as a “magic pill” transcends

beyond synchronous services into the EDA domain as evidenced by related

infrastructure considering the requirement of non-normal workloads “niche

use cases”. However, as we see in the Envoy team’s experiments [30] and

the work of Gupta et al. [29], random, though providing for well distributed

workloads asymptotically, suffers from an extremely high variance time

series.

33

3.2 Load Balancing for Asynchronous Services

For our work with event driven architectures (EDA), we have chosen

Apache Kafka to build the infrastructure and motivate the issue. This

choice is justified as Kafka is the one of the more advanced event-buses

available today, Sharvari and Nag [35].

Most of the work that has addressed load balancing in Apache Kafka

based infrastructure has focused on load balancing the Kafka brokers

between physical nodes, [36] and [37]. There also have been some work

in predicting the performance of Kafka based systems but has assumed a

correctly working system, [38]. There have been yet other works that look

at autoscaling consumer groups in an attempt to match rate of messages

produced to rate of messages consumed, [39]. However, looking at industry

articles it seems that the assumption that hot keys are absent can be

mistaken, [24] and [25].

In academia, there is ongoing research on this topic. However, as per

our knowledge, most of that work assume:

• workload characteristics to be static, i.e. the load on individual streams

do not change.

• number of streams to be constant over the lifetime of the application.

Gedik et al, [13], have used the lossy algorithm to track heavier flows

and map those to partition explicitly. Other flows are mapped using the

consistent hash function. This work is probably the most similar to ours.

They use three lossy counters over tumbling windows to emulate a sliding

window whereas we only use a single lossy counter over strictly demarcated

windows.

34

Nasir et al, [14], has proposed PKG that uses power of two random choices

to map each key to the least loaded partition selected by two different hash

functions. This results in every flow, heavy and otherwise, being in a split

state that requires reconciliation. Though like PKG, SMALOPS can split

flows, we include a discussion of techniques to achieve generalized split

state reconciliation.

Finally, Rivetti et al, [15], propose a solution that learns the distribution

of the keys before using a global mapping function to achieve near-optimal

load assignment. They map non-heavy keys to “buckets", where the number

of buckets is user-defined and larger than the number of partitions, using

a random hash function from two separate hash function families. Their

solution maps the heavier flows, identified by the space saving algorithm,

explicitly to specific partitions. SMALOPS on the other hand uses explicit

maps for the heavier flows only while allowing consistent hashes to map

others.

SMALOPS extends the existing research in the fundamental ways: firstly,

it ensures that the load balancer can respond to dynamic workload changes

while keeping the state overhead small. SMALOPS also proposes a generic

mechanism to rebuild stream ordering allowing stateful processing on split

state streams.

35

Chapter 4: Mu: Ingress Load Balancing in Edge Systems

Serverless computing platforms simplify development, deployment, and

automated management of modular software functions. However, existing

serverless platforms typically assume an over-provisioned cloud, making

them a poor fit for Edge Computing environments where resources are

scarce. In this paper we propose a redesigned serverless platform that

comprehensively tackles the key challenges for serverless functions in a

resource constrained Edge Cloud. Edge systems are small environments

that are placed close to the end users. Edge environments aim to reduce

latencies in time sensitive applications running on end user devices.

We built “Mu" as a set of extensions to the Knative serverless platform.

Serverless computing is a good fit for this environment since the service

profile can be swiftly reconfigured. However, the platform needs to be able

to squeeze every bit of performance out of the environment. Due to the

assumptions associated with cloud environments, the typical serverless

platform falls significantly short of this goal. Our evaluations show that

Mu improves 99th percentile response times by 62% through better load

balancing.

4.1 Introduction

Serverlss platforms have gained popularity because they allow easy

deployment of services in a highly scalable and cost-effective manner [40].

This should make serverless a perfect fit for Edge Computing, where tiny

data centers are distributed throughout a geographic area, allowing users

to access low latency services rather than relying on a distant, centralized

36

cloud. Each edge data center will be highly resource-constrained. Thus,

the autoscaling “from zero” capabilities that allow serverless platforms to

use no resources if there are no requests arriving, are highly desirable.

Similarly, the fast instantiation of new functions ought to be a boon for Edge

deployments with high user movement in and out of the area, as in a mobile

edge cloud.

Unfortunately, current serverless platforms assume access to a more-

or-less infinitely scalable cloud and pay little attention to resource wastage.

When deployed at the edge, these characteristics lead to unacceptable

performance such as high tail latency and unfair resource allocations under

multi-tenancy because of the limited resources. As a result, current designs

of serverless platforms are not yet a viable option for Edge environments.

In this work, we propose Mu, a resource management framework for

serverless at the Edge that extends the open-source Knative platform. Mu

tackles the load balancing issue in such environments, amongst other chal-

lenges. Mu’s load balancer carefully assigns requests based on up-to-date

statistics of backend load. This information is efficiently propagated through

the system using ‘piggybacking’ of key measures to reduce monitoring over-

heads. We demonstrate that Mu’s precise load balancing improves the 99th

percentile response time by up to 62%, when nodes are heterogeneous or

workloads are bursty—both common occurrences at the Edge.

4.2 Background

The rise of 5G has led to a network provider-centric Edge vision where

cellular base stations or central offices provide a (relatively) small number of

servers or racks of servers which can provide services for nearby users [41].

In this work, we consider an Edge cloud environment where limited

37

compute resources–likely on the scale of a single rack or less–are being made

available to service requests for function execution from nearby network

users. In this scenario, the Edge cloud needs to support a variety of

different functions (since different users may have different needs), and it

must manage its resources efficiently and fairly to simultaneously support

all users.

Serverless Platforms: Cloud platforms provide compute and storage ser-

vices at large scale and low cost through economies of scale and effective

multiplexing. Serverless computing takes this multiplexing and scalability

to the next level by allowing providers to commit just the required amount

of resources to a particular application (as many instances as necessary,

but only when needed) and utilize the resources for just the time needed to

execute an invoked function [42].

In this work, we focus on Knative[2] and how it can be deployed in an

Edge environment. In a Knative cluster, developers can write functions in

a variety of languages, which are then deployed into backend worker pods.

Each worker pod consists of two containers namely the ‘queue proxy’ and

the ‘function’ itself. The ‘queue proxy’ is responsible for queuing incoming

requests and forwarding them to the ‘function’ container for execution.

Requests enter the system via an ‘Ingress Gateway’ that maintains metrics

about active backend pods and routes requests to them. The platform is

managed by an Autoscaler that dynamically adjusts the number of worker

pods, a placement engine that places new pods, and a load balancer in the

gateway that directs requests. In this work, we comprehensively consider

all three of these aspects to enhance Knative’s architecture and better adapt

it to an Edge cloud environment.

There is a wide range of work on load balancing for web [28] and cloud

38

applications [31]. Our load balancing algorithm is inspired by the “join

the shortest queue” (JSQ) approach [29], which has been shown to be

nearly optimal, but only in an environment with homogeneous servers and

workloads. JSQ also requires accurate information on queue length, and

we show how we can efficiently acquire this through piggybacked metrics.

We also draw inspiration from HALO [32], which focuses on heterogeneous

environments, and we further show that serverless load balancers need to

take special care when new pods are frequently added or removed.

There have been a number of measurement-driven efforts to under-

stand the behavior of serverless platforms. Measurements on commer-

cial serverless cloud platforms (AWS Lambda, Microsoft Azure and Google

Cloud) [43, 44] while others [45, 46] show that it is important to consider

throughput, scalability, memory footprint, etc. There have also been a num-

ber of measure-ment-based evaluations of open-source serverless frame-

works such as Knative, OpenFaaS, OpenWhisk, Kubeless, etc. [47, 48, 49],

which provide some preliminary understanding of the performance char-

acteristics and sensitivity to configuration parameters of these platforms.

We use these efforts to enhance our understanding of these open-source

serverless frameworks, as we develop Mu.

4.3 System Design

Fig. 4.1 shows the architecture of Mu, which builds on the Knative, Ku-

bernetes, and Istio tools. Mu extends the Istio Ingress Gateway to efficiently

collect metrics that are “piggybacked” onto response headers by the Queue

Proxy containers (§4.3.1) for timely feedback of critical information without

resorting to periodic sampling.

All incoming traffic goes through the Ingress Gateway’s Load Balancer,

39

Deployment

Metric
Server

Ingress Gateway

Placement
Engine

Create/
Recycle

Placement
Decision

Distribute
Requests

Load
Balancer

Kubelet
Auto-scaler

Metric/Control Flow
Data Flow

Custom Component
Istio Component

Kubernetes Component

User Component

API
Server

Function Pods

Clients

Resource
Metrics

Resource Metrics,
New Pod Demands

Internal Metric
Server Metrics

Responses with
Piggybacked Metrics

Auto-scaling
Decision

Knative ComponentQueue Proxy
Container

User
Container

Figure 4.1: Mu Overview.

which factors in the gathered metrics to evenly load the function containers.

4.3.1 Metrics

A serverless platform relies on metrics such as the load on function

containers to guide resource management. Some of these metrics, such as

the load on each User Container are maintained by Knative in the Queue

Proxy containers. The queue proxy is a sidecar container allocated for

each user function container that buffers incoming requests. The queue

proxy maintains a queue to throttle requests to the function container

based on the container concurrency configuration parameter set by the

administrator. To avoid high overhead when the number of function pods is

large, Knative’s Autoscaler periodically samples a subset of queue proxies to

gather metrics, but we have found that this can lead to having an inaccurate

view of important data.

To accurately monitor the status of function pods with low overhead,

Mu extends the queue proxy at each pod to collect metrics about function

processing and ‘piggyback’ those metrics in the response header to the

ingress gateway to provide timely information. This allows the ingress

gateway to maintain detailed per-pod statistics to guide its load balancing

algorithm, while exporting aggregated information to the Autoscaler via its

40

Table 4.1: Summary of main notations

Notations Definitions
Tc time interval of capacity estimation
Cd response count during Tc in pod
Cdc count of responses whose confidence

flag is 1 during Tc in pod
Cr ongoing request count in user container
Ccur current request count in cluster
Cnew new request count during scaling epoch
Cpro processed request count during scaling epoch
Queue queue size of the queue proxy
IRcur current incoming rate
IRpre predicted incoming rate
Ncur current pod number
Ndes desired pod number to meet SLO
Rd departure rate of pod
Rsd Smoothed departure rate of pod
Cape estimated pod capacity
Ratioc confidence ratio
RTavg average responding time
QTavg average queuing time
ETavg average execution time

Internal Metric Server.

The queue proxy gathers the following metrics:

Queue Length: The queue length metric shows the instantaneous size

of the queue in the queue proxy, measured when the request is removed

from the head of the queue to be executed. The load balancer uses this

metric to determine the relative load across a group of worker pods and

the Autoscaler uses aggregated queue length information to modulate the

scaling decision and avoid potential Service Level Objective (SLO) misses.

Average Execution Time: The queue proxy measures the execution

time of each request, which is the time between forwarding the request to

the user container and receiving its response back. The average execution

time ETavg is the Exponentially Weighted Moving Average (EWMA) of the

measured execution time. The function pod piggybacks this metric to the

41

ingress gateway, which passes on the average execution time across all

function pods to the Autoscaler.

Departure Rate and Confidence Ratio: Ideally, the queue proxy would

report the pod’s maximum service capacity, but this metric can be difficult

to estimate, particularly if the incoming rate is low. Instead, Mu has the

queue proxy report its departure rate as well as a “confidence ratio” that

indicates how fully loaded the server is. The calculation of these metrics

is detailed in Algorithm 1. The queue proxy maintains a confidence flag

for each request, revealing whether the user container is fully utilized (i.e.,

continuously has a queue of waiting requests) when processing this request.

The default value of the confidence flag is 0. When a request arrives at the

queue proxy, it sets the confidence flag to 1 if the queue size is larger than

0. During the processing of a particular request in the user container, the

queue proxy resets the confidence flag of that request to 0 if the queue size

drops to 0, implying that the user container is underloaded (departure rate

is smaller than capacity).

Rather than choosing a fixed time interval for measuring estimated

capacity, we adapt it based on the time scale of the request execution.

The time interval for updating the estimated capacity is Tc. If the average

execution time ETavg increases, the time interval Tc increases accordingly,

so as to collect sufficient responses in Tc for a more accurate departure rate

estimate. When the average execution time ETavg reduces, the time interval

Tc drops, so as to update the departure rate quickly. When there are no

requests in time interval Tc, then Tc will be reduced by half to react quickly

for future requests, until Tc is back to its default value of 1 sec.

Every time interval Tc, the queue proxy computes the departure rate and

confidence ratio. The departure rate is then smoothed using EWMA. The

42

confidence ratio is the ratio of the requests whose confidence flag is 1 to the

total requests in the time interval Tc. If the user container is fully utilized

in Tc, the confidence ratio is 1 and the actual capacity will be close to the

departure rate. Both of these values are propagated to the load balancer,

enabling it to make an estimate of a pod’s maximum service capacity, i.e.

Cape and share with the Autoscaler.

Algorithm 1 Capacity Estimation
1: On receiving a request in queue proxy:
2: if Queue > 0 then
3: request.con f idence = 1 . request.con f idence is the confidence flag of this request
4: else
5: request.con f idence = 0

6: On arrival of a response from user container:
7: Cd =Cd +1 . update the response count
8: if request.con f idence == 1 then
9: Cdc =Cdc +1
10: if Queue == 0 then
11: for every request in the user container do
12: request.con f idence = 0
13: if 10 ·ETavg > 2 ·Tc then . increase the time interval
14: Tc = max{10 ·ETavg,10}
15: if 10 ·ETavg < Tc/2 then . decrease the time interval
16: Tc = min{10 ·ETavg,0.1}

17: At every time interval Tc:
18: if Cd == 0 and Cr == 0 then . the pod is idle
19: Rsd = 0, ETavg = 0
20: if Tc > 1 then
21: Tc = max{Tc/2,1} . decrease the time interval
22: else
23: Rd =Cd/Tc . the departure rate of this time interval
24: if Rsd == 0 then . update smoothed departure rate
25: Rsd = Rd
26: else
27: Rsd = α ·Rsd +(1−α) ·Rd . EWMA
28: if Cd > 0 then . update the confidence ratio
29: Ratioc =Cdc/Cd
30: else
31: Ratioc = 0
32: Cd = 0, Cdc = 0 . reset the counters

43

0 100 200 300 400 500
workloads

−25
0

25
50
75

100

%
ag

e
re

du
ct

io
n

Figure 4.2: %age Reduction in absolute error for workloads with > 100K
invocations

Predictor Accuracy: For validating the predictor we select all the work-

loads with more than 100K invocations for the first day, from the Azure

Functions dataset [40]. The traces in the Azure dataset contained invoca-

tions per minute for each function. We select the top 555 workloads with at

least 100K total invocations, and predict the number of invocations for the

next minute. We took 50 prediction models with a combination of 5 different

window sizes (10, 50, 100, 500, 1000) and 10 different learning rates (10−1 to

10−10) for each function. Based on experiments across these functions, the

value of EWMA coefficient was selected as 0.99 as it yielded better results

than other values ranging from 0.5 to 0.999. For each workload, the average

absolute error was calculated for the predictor and for the naive approach

(which takes the current requests per minute as the prediction, like the

default Knative which includes no prediction logic). The %age reduction in

error for all the workloads is shown in Fig. 4.2. For 64 out of 555 workloads,

the predictor performs slightly worse (-1.53% average degradation) than

the naive approach, due to the random invocation pattern. Similarly, for 22

workloads, we see no improvement. For the remaining 469 workloads, the

incoming rate is predicted fairly accurately, with the absolute error reduced

44

19.01% on average. The predictor executes ∼15.6K instructions for each

prediction, taking ∼100 µ secs. For 200 workload streams, the predictor

takes ∼20 ms every 2 seconds, an acceptably small 1% overhead.

4.3.2 Load Balancer

The load balancer resides in the ingress gateway and routes client re-

quests across all pods to maximize utilization and ensure that no pod is

overloaded. Load balancing requests in an Edge cloud serverless platform

faces two primary challenges: resource heterogeneity and system dynamics.

Unfortunately, the load balancers employed in existing serverless platforms

fail to accurately account for either of these issues.

The first issue arises because an Edge cloud may be composed of a

variety of hardware types, especially in “fog computing" environments where

the cloud is composed of a mix of infrastructure nodes and resources pooled

from mobile devices [50, 51]. Even if an Edge cloud is located in a more stan-

dardized environment such as a 5G base station, it is increasingly common

for resource-constrained environments to use heterogeneity (e.g., ARM’s

big.LITTLE architecture which combines high and low performance CPU

cores on a single chip or accelerators like programmable NICs, GPUs, etc) to

provide flexible trade-offs between performance, power utilization, and over-

all cost. Further, even if all hardware is identical, the dense consolidation

of an Edge cloud may result in interference and resource contention which

may cause some pods to execute functions more slowly than others, espe-

cially in the face of diverse workloads (IoT, ML, CDN, cellular functions, etc.).

This heterogeneity can impact Knative’s “Least Connection” load balancer,

which attempts to track the queue length at each backend pod by comparing

the number of requests sent versus responses received. When deciding

45

which pod to select for a new request, it only considers the queue length

estimate, which we show can lead to poor decisions when backends have

varying service capacities. Further, if the serverless platform runs multiple

load balancer gateways, this queue length estimate may be inaccurate as it

ignores queueing caused by other gateways.

The dynamic nature of Mu’s autoscaling capabilities further complicates

load balancing. The load balancer must be aware of newly added pods, and

it should direct the appropriate amount of load to them – avoiding “herding”

problems where too much load is shifted to a newly started pod, but also

avoiding underloading it. In effect, a newly started pod represents a different

type of heterogeneity since it will begin with an empty queue of requests,

while other nodes may already have nearly full queues if scaling occurred

due to approaching overload. The Knative Least Connection load balancer

employs a power of two random choices algorithm [11] which means that it

randomly selects two backends and then picks whichever has the smaller

number of active connections. While this provides greater scalability as the

cluster size increases, it comes at the expense of lower accuracy, which may

not be the appropriate trade-off for a resource-constrained Edge cloud. As

a result, a new pod in Knative has at most a 2/N chance of being selected

in a cluster of N servers. Our evaluation shows that this limits Knative’s

ability to quickly shift load to new pods, leaving the system in an overloaded

state despite idle resources.

4.3.3 Load Balancer Algorithm

A smart load balancer should recognize both differences in service ca-

pacity and pod queue length to appropriately route requests across new

and existing pods. In Mu, we implement a new load balancer that leverages

46

the metrics gathered by function pods to make better decisions based on

up-to-date information.

40 50 60 70 80 90
Requests Per Second

0

250

500

750

Re
sp

on
se

 T
im

e
(m

s)

Mu-Mean
LC-Mean
Mu-99
LC-99

(a) 99%ile latency &
mean latency

100 200 300 400
Response Times in ms

25
50
75

100

%
 o

f R
eq

ue
st

s

MU-40RPS
LC-40RPS

(b) Response time CDF
with 40 RPS

200 400 600 800 1000
Response Times in ms

25
50
75

100

%
 o

f R
eq

ue
st

s

MU-80RPS
LC-80RPS

(c) Response time CDF
with 80 RPS

Figure 4.3: Mu’s load balancer vs. Least Connection load balancer: Mu
reduces tail latency across all load levels.

Estimating Pod Metrics: Most prior work on load balancing assumes

access to service rate information for each backend; further, such rates

are assumed to be static. In a serverless environment, the large number of

different functions makes it impractical to assume all functions have been

previously profiled to determine service rates, particularly for an edge cloud

with hardware heterogeneity. A backend’s capacity may also change over

time, particularly in a densely packed Edge environment where resource

contention can occur. Thus Mu must be able to accurately and dynamically

determine both the service capacity of each pod, and its current load level.

As described previously, Mu’s Queue Proxies piggyback key metrics as part

of each response header, providing the load balancer up-to-date information

about each pod. However, further processing is required in order to produce

accurate estimates of pod capacity and load.

When a function is deployed for the very first time, Mu has no information

about its execution cost. However, once requests start to be processed, it

quickly builds a model of each pod’s service capacity as follows. On each

response from backend pod i, we compare the piggybacked confidence,

pigRatioi, and departure rate, pigRi, against previously saved values for the

47

pod, savedRatioi and savedRi. If pigRatioi ≥ savedRatioi or pigRi ≥ savedRi, then

we update pod i’s capacity estimate Capi = pigR/pigRatio and update the saved

confidence ratio and departure rate values to be equal to the piggybacked

values. If the prior conditions are not met, then the saved values are not

updated. A newly started pod with no data uses the maximum values seen

by another pod of the same function type as a default.

The intuition behind this algorithm is that if the Confidence Ratio re-

ported by the queue proxy is low, that indicates that the backend has had a

low or empty queue, and thus it is safe to aggressively predict that the real

service capacity is much higher than the departure rate. When the Confi-

dence becomes 1, it means that the backend is consistently seeing a queue,

which means its departure rate will be close to the actual maximum service

capacity of the pod (otherwise the queue would have drained). Tracking a

saved Confidence Ratio and Departure Rate ensures that the Load Balancer

does not lose information over time, assuming that the service capacity

drops simply because the arrival rate falls.

To track the load on each pod, the load balancer can use the piggybacked

queue length values. Using the piggybacked value instead of a local counter

at the load balancer ensures that the metrics are accurate even if there

are multiple load balancers in the cluster. These metrics are aggregated

and exposed to the Autoscaler, which uses them to determine when to scale

up as described in the prior section. Further, we use the service capacity

information to guide downscaling, causing the system to prefer to shut down

slower pods when they are no longer needed. This not only helps ensure the

downscaling won’t cause unexpected overload, but also naturally makes the

algorithm pick a pod with fewer requests in its queue, allowing its resources

to be freed sooner.

48

00 01 02 03 04 05

Time (seconds)

0

200

400
Re

sp
on

se
 (m

s)
LeastConn 65 RPS

Before Start
After Start

00 01 02 03 04 05

Time (seconds)

Mu 80 RPS
Before Start
After Start

Figure 4.4: Mu takes advantage of a newly added pod more quickly: shifting
load, improving both mean (horizontal lines) and variance in response time
more

Selecting Pods: Using the above information about pod capacity and

queue length, the Mu Load Balancer calculates the estimated response time,

Ri, that a new request would see on each pod i in the cluster:

Ri =
Qi +1
Capi

(4.1)

where Capi is the estimated service capacity and Qi is the estimated queue

length–we add one to account for the cost of processing the new request. The

load balancer then selects the pod with the minimum Ri. This algorithm

attempts to minimize the response times seen by all requests, and will

naturally forward more requests to pods with higher service capacities or

lower queue lengths (such as a newly started pod). It should be noted

that since some functions may support concurrent processing of requests,

this may be an inaccurate estimate of the request’s actual response time;

nevertheless, it represents both the service capacity and load on a function

well, so we find it gives a good signal about what pod will be the best choice

for the request.

49

Load Balancer Performance: To demonstrate the importance of using

both queue length and service capacity to guide decision making, we run

an experiment with two “fast” and two “slow” pods. To get a sense of what

a reasonable level of heterogeneity is, we compared the service time of a

CPU bound prime number calculating function on a high-performance

AMD EPYC Rome 64 core Processor (3 GHz) and an Intel Xeon CPU X5650

running in a low power mode at 1.6GHz. The AMD system is roughly two

times faster than the Intel one depending on the prime function parameter.

Thus, in our experiments we set faster pods to be twice as fast as the

slower ones; we use a function with a service time of about 100ms on a

fast pod. We measure the response time when adjusting the client send

rate. Fig. 4.3a shows how the mean and 99%ile latency change with a

rising workload. We observe that Mu can support a higher request rate

with lower response times, and that it particularly improves tail latency

due to better accounting for the relative speeds of the different pods: at

80RPS, the 99%ile decreases from 618ms to 230ms, leading to a much

narrower response time distribution as shown in Fig. 4.3b and 4.3c. To

understand why Mu provides such a benefit, we examine the queue lengths

of different pod types in each algorithm. Despite attempting to pick servers

that have fewer active connections, Least Connection still tends to cause a

higher queue build up on slow pods compared to fast pods. In contrast, Mu

correctly recognizes it can safely queue more load on the faster pods, while

still maintaining a low overall execution time.

Load Balancer Agility: We next demonstrate Mu’s ability to more quickly

adapt by leveraging its detailed pod information. We consider a scenario

where four pods (two fast, two slow) are on the verge of overload. Fig. 4.4

50

shows the response time for requests immediately before and after a new

fast pod begins (marked by the vertical line and color change). While the

pod addition does help reduce the mean response time of Least Connection,

it still shows a wide spread of response times due to the poor balancing of

the load. In contrast, Mu provides a much tighter distribution of response

times, and shows a clear downward trend as new requests are directed away

from the heavily loaded pods and towards the new pod. Note that in order

to cause Mu to hit the same overload point as Least Connection in this

experiment we need to send it a higher workload (80RPS vs 65RPS), so Mu

is not only handling a larger volume of requests, but it is able to do so while

significantly reducing both tail and mean latency (horizontal lines).

4.4 Evaluation

Table 4.2: Experiment
configuration
Parameter/Specification Values

Invocation Range W-1 41-230 rps
W-2 69-182 rps

Average invocations W-1 154 rps
W-2 146 rps

Container Concurrency 4
Grace Flag (Mu only) 16

Execution time 500ms
Maximum pod capacity 48
CPU and Mem. per pod 7 cores, 30GB

Target RPS 8
CC 40

SLO 5 seconds

0 5k 10k 15k 20k
response time (ms)

0

20

40

60

80

100

%
 o

f r
eq

ue
st

s

Concurrency
RPS
Mu

0 5k 10k 15k 20k
response time (ms)

0

20

40

60

80

100

%
 o

f r
eq

ue
st

s

Concurrency
RPS
Mu

Figure 4.5: Response time CDF for 3 frameworks
for Workload 1 (left); Workload 2 (right; only par-
tial CDF for Concurrency)

Table 4.3: Comparing Mu with the standard Knative build
Average response 99% response # 503 errors Requests served Requested Pods Active Pods

time (ms) time (ms) /total requests within SLO Max Avg. Max Avg.

Mu Workload-1 952 3805 6779 / 221026 213437 (96.5%) 33 20.5 24 20.0
Workload-2 1020 4073 5211 / 209905 203622 (97.0%) 26 19.4 24 18.9

RPS Workload-1 880 11757 0 / 221026 213089 (96.4%) 38 29.3 26 25.1
Workload-2 2605 8808 0 / 209905 158511 (75.5%) 32 27.9 22 20.9

Concurrency Workload-1 588 2141 0 / 221026 220144 (99.6%) 141 41.4 40 24.5
Workload-2 7765 49526 0 / 209905 142774 (68.0%) 136 62.3 24 21.2

We now integrate all the components of Mu, and evaluate it for a few

large scale workloads. We compare Mu with the Knative default approaches.

51

(a) Workload 1

(b) Workload 2

Figure 4.6: Time series of Response Time for Mu, RPS, and Concurrency
(Top: Workload 1; Bottom: Workload 2)

Implementation Details and Testbed Setup: Mu’s implementation extends

multiple components in the Knative ecosystem, including the Knative Queue-

Proxy, Istio Gateway, Knative Autoscaler, and Kubernetes Scheduler (place-

ment engine). We base our code on Kubernetes v1.17.0, Istio’s Envoy Proxy

v1.16.0, and Knative v0.13.0. Our extensions comprise ∼1,000 lines of

code added for the Autoscaler, ∼500 lines for the load balancer and metrics

server, ∼200 lines for the queue-proxy, and ∼800 lines for the placement

engine.

We evaluate the serverless platforms on the Cloudlab testbed [52] con-

sisting of one master and ten worker nodes, each of them equipped with Two

Intel E5-2660 v3 10-core CPUs at 2.60 GHz (40 hyperthreads per host) and

160 GB ECC memory running Ubuntu 18.04.1 LTS. We do not add any extra

pod heterogeneity in this experiment other than the natural fluctuations

found on CloudLab.

52

4.4.1 Overall Mu Performance

To comprehensively evaluate Mu, we use the workloads received by

functions in the Azure dataset [40]. We select 2 workloads with variable

invocation patterns from the top 10 workloads sorted by maximum number

of invocations for the first day in the dataset. We scale down these workloads

by dividing the number of invocations by 100 for the experiment, treating

each minute of the original trace as one second to add dynamics. The scaled

down workload and the configuration of the serverless environment are in

Table. 4.2. With the combined Autoscaler, Load Balancer, and Placement

Engine, Mu achieves better overall performance for requests to serverless

functions, even if the system is subject to a significantly heavy load, and

more fairly allocates the limited edge cloud resources among the competing

functions.

Latency and Fairness: The CDF of the response times for each workload

and approach is shown in Fig. 4.5. Mu has good control over the response

times and limits the tail latency that exceeds the specified SLO of 5 seconds

for both workloads. For Workload 2, Mu provides a substantially tighter

response time distribution than RPS or Concurrency. As shown in Table 4.3,

the 99% response time for the two workloads are both below the 5 second

SLO for Mu. Examining the response time distribution (Fig. 4.5), and the

average and 99%iles (Table 4.3) and the time series of the response times

(Fig. 4.6a, 4.6b), we see that Mu maintains fairness between the workloads

for the entire length of the experiment.

In contrast, the standard Knative approaches result in much larger re-

sponse time tails, and both unfairly treat one of the workloads. For Workload

1, both RPS and Concurrency (CC) achieve a lower average response time

(except RPS has a relatively large number of requests experiencing high

53

delays at the start of the workload, resulting in its 99%ile being higher).

However, for Workload 2, both RPS and CC behave quite poorly at different

periods of the workload execution, as seen from the time series (Fig. 4.6b),

with 25-32% of requests violating the SLO. Workload 2 sees an unacceptably

large 99% latency with CC as seen in Table 4.3. Since Mu is conservative

in its pod allocation for both Workload 1 and 2, it sees a slightly higher

average response time for Workload 1 than RPS and CC, but better for

Workload 2 than RPS and CC. The 99%ile for Mu is clearly better than the

two alternatives.

SLO Performance: Overall, Mu provides a significant increase in the total

number of requests served within the SLO (96.8%) compared to the RPS

scaling policy (86.2%) and Concurrency scaling policy (84.2%), as shown in

Table 4.3. Mu uses SLO-aware admission control and returns 503 errors for

requests which it will not be able to serve within the SLO based on current

queue lengths. This avoids the build up of a large queue with the arrival of a

burst of requests. RPS and concurrency do not factor SLO into account, so

when bursts occur, requests are buffered in the activator, and the queueing

results in a large number of SLO misses. Throughout the experiment, Mu

has relatively uniform response times, increasing only during bursts, when

the system is under-provisioned (e.g., first 200 seconds of the experiment

when we have to scale up from zero to a large number (∼ 20) of pods). On the

other hand, Concurrency and RPS see persistent queuing for long periods

(> 400 seconds) and the response time grows substantially more than the

desired target SLO of 5 seconds. There is also significant unfairness for

Workload 1 vs. Workload 2 as seen in Fig. 4.6a, 4.6b.

As shown in Fig. 4.6, Mu returns 503 errors (indicated by red dots). Our

view is that by having these failures (and potentially having those requests

54

be retransmitted) impacts a relatively small number (<5%) of requests, which

is better than building up a large queue resulting in very long latencies for

a large number of requests (25-30%, as seen for RPS and Concurrency) and

likely to more seriously impact user Quality of Experience (QoE). These 503

errors are well correlated with the occurrence of bursts when resources

are not yet provisioned by Kubernetes. This is mitigated somewhat by the

predictor and proactive autoscaling. In fact, most of the 503 errors occur

when the burst arrives at the beginning when the predictor has not yet

learned the characteristics of the workload. Additionally, even though Mu’s

autoscaler requests allocation of a larger number of pods, Kubernetes can

take a large amount of time to provision these pods, starting from an initial

zero-scale system (as seen in the difference between pods being requested

and active in the first 200 seconds for Mu.

55

Chapter 5: BLOC: Balancing Load with Overload Control in

Microservices Architectures

The microservices architecture has become ubiquitous in the cloud

environment. It simplifies application development by breaking monolithic

applications into manageable micro services that can be developed and

deployed independently of the whole. However, the move from a monolithic

or simple multi-tier architecture to a distributed microservice “service mesh”

leads to new challenges due to the more complex application topology.

A particular problem when automatically managing the performance of

microservices is that since each service component scales up and down

independently, it can easily create load imbalance problems on shared back-

end services accessed by multiple components. Traditional load balancing

algorithms were designed for centralized load balancers sitting between a

group of clients and a server farm. These algorithms, however, do not port

over well to a distributed microservice architecture where load balancers

are deployed client-side. In this paper we propose a self managing load

balancing system, BLOC, which provides consistent response times to users

without using a centralized metadata store or explicit messaging between

nodes.

We show that different service layers scaling independently can create

unacceptably wide response time distributions and long tails, hurting client

experience. This is because popular microservice load balancing algorithms,

like Least Connection, only use a single component’s view of the backend load

to guide decisions. This limited perspective leads to an unevenly balanced

system and the potential for incast problems where a large number of

56

frontend components can easily overload a shared backend. BLOC uses

overload control approaches like rate limiting, active queue management

and backpressure to provide feedback to the load balancers. The load

balancers react to this feedback with techniques like backoff and retries.

We show that this performs significantly better in solving the incast problem

in microservice architectures.

Evaluating this framework, we found that BLOC improves the response

time distribution range, between the 10th and 90th percentiles, by 2 to 4

times and the tail, 99th percentile, latency by two times.

5.1 Introduction

Microservices have become increasingly popular due to a variety of ad-

vantages they provide like ease of deployment, continuous integration, inde-

pendent development and others. However, it also brings the network inside

the architecture as the monolith is broken into multiple independently

deployed pieces. In most current scenarios, microservices are deployed

as containers in clusters managed by an orchestrator like Kubernetes [?].

A pattern related to container clusters that has also become popular is a

move away from single-node centralized load balancers. Instead, client-side

load balancers are deployed alongside each upstream service container as a

“sidecar", as illustrated in Figure 5.1. An advantage of using this pattern is

that the load balancer is removed as a single point of failure or performance

bottleneck.

Many microservice deployments are managed by service meshes like Istio

[4]. Istio uses Envoyproxy [3] for load balancing, which uses a power of two

random choices (P2C) [11] version of the Least Connection algorithm. Least

Connection is based on Join the Shortest Queue (JSQ), which has been

57

Load
Balancer

Monolith A

Monolith B

Load
Balancer

A2

A1

B2

B1

B3
B2

B3

Microservices

Figure 5.1: A multi-tier application built from Monolithic services (top)
can be decomposed into microservice components (bottom), potentially
improving development practices, but complicating the application topol-
ogy. Sidecar load balancers (green circles) are deployed adjacent to each
microservice component to route requests to downstream nodes.

58

proven to closely approximate the best possible load balancing algorithm

by greedily selecting the backend which currently has the smallest queue

of work [29]. However, JSQ’s optimality depends on it being deployed in

a centralized environment where all requests flow through a single load

balancer, giving it a global view of backends’ queues. In Least Connection, a

sidecar based load balancer lacks this perspective, so it selects the backend

to which it currently has the smallest number of open connections as the

target for a request. In this case, the selected backend may not necessarily

have the smallest queue since the policy only accounts for requests coming

from the node attached to the sidecar.

In a microservice deployment, it is common for backend services to be

shared by multiple upstream components, each of which may be replicated.

In such a scenario, each upstream node sends only a small fraction of the

total requests that each downstream node receives. This leads to a diver-

gence between the actual load of the downstream nodes and the estimate

of that load the upstream nodes have. As a result, the performance of

the application can deteriorate quickly due to bad decisions made by such

“local" algorithms.

In this work, we present BLOC1, which makes the downstream nodes a

part of the decision making without requiring expensive coordination. We

compute the capacity of each service in terms of the number of requests

one node of that service can handle while keeping end-to-end response

times within the SLO (Service Level Objective). We then send each upstream

node that we are currently interacting with “confidence chips" that will

enable them to send requests in the future. The scheme also maintains
1The original article, published at ACSOS 2022 [9], has been extended by a submission

to the ACM Transactions on Autonomous and Adaptive Systems (TAAS) journal, [12] which
is still under review. Source code available at [53]

59

some capacity for upstream nodes that the downstream is not interacting

with at the moment but might still send a request. Downstream nodes

use active queue management to reject requests that push the number

of active requests over its capacity. In response to such rejections, the

upstream nodes backoff for a predefined amount of time. Upstream nodes

also use power of two random choices to reduce the likelihood of immediately

selecting a downstream node that just rejected a request.

We make the following contributions in this paper:

• The design of BLOC, a distributed load balancing system that uses

admission control, backpressure, and piggybacked server information

to effectively balance load, particularly in overload scenarios.

• BLOC’s architecture is fully distributed, requiring no coordination

between replicas or centralized load balancers that can be a bottleneck

or single point of failure.

• BLOC’s implementation uses ingress and egress proxies deployed as

container sidecars, allowing its load balancing and admission con-

trol algorithms to be seamlessly integrated with existing applications

without code modifications.

We implement BLOC as a Go based proxy and deploy it in a Kubernetes

cluster. Our evaluations show that BLOC can improve the response time

distribution from 10th to 90th percentile by 2 - 4 times and the 99th percentile

tail latency by two times.

5.2 Background

Microservices and Sidecars: Micorservices are a popular architecture

pattern that breaks a monolithic application into multiple smaller services.

60

It allows for shorter development time, faster deployment cycles, usage of

different technology stacks for different parts of the application, swapping

entire parts of an application, and continuous integration without any

impact on the operation of the overall system.

Microservices are typically deployed in containers with an orchestrator

framework like Kubernetes. Just as microservices are the smaller parts

of a decomposed monolithic service, container orchestration frameworks

take this a step further and allow each microservice to be decomposed into

several containers, e.g., one container might hold the application business

logic, while others run monitoring components and load balancing proxies.

These auxiliary containers are typically referred to as “sidecars”, due to

the way they are deployed adjacent to an application container and often

process their incoming or outgoing requests. A group of application-specific

and auxiliary containers that together form a logical service are grouped

into a single namespace known as a “pod” by Kubernetes.

Since each pod can be replicated multiple times to scale up and down

a microservice component, it is necessary to have load balancers that

help route requests to the appropriate downstream node. The ability to

easily glue together functional components has allowed for the move away

from single-node centralized load balancers to distributed sidecar load

balancers deployed as part of each pod. Each proxy sidecar thus handles

load balancing all outgoing requests from the microservice component they

are attached to across muliple downstream replicas. This distributes the

load balancing work, giving a more scalable system, but it also means that

each load balancer lacks the global view of a centralized approach.

Istio, Envoy, and Least Connection: As an example of industry deploy-

ments of microservices networking we cite Istio [4] and Envoy proxy [3]. Istio

61

is a popular example of what is known as a service mesh. A service mesh

is a control plane that works with Kubernetes to deploy networking infras-

tructure throughout Kubernetes clusters. Typically, this is done through

deploying a mesh of sidecar proxies, like Envoyproxy with Istio, that provides

the networking data plane and implements components like load balancing,

service discovery, backpressure and much more.

Envoy acts as both an ingress and egress proxy. The egress proxy

implements load balancing and routing for any requests generated by the

attached microservice component to downstream services. The ingress

proxy intercepts all incoming requests from upstream services, and is used

for monitoring, security management, etc. In our work we leverage this

architecture so that downstream ingress proxies can provide feedback to

upstream egress proxies, improving load balancing decisions. Since our

changes are only within the proxy, no modifications need to be made to the

microservice applications themselves.

Sidecar proxies typically, use traditional load balancing algorithms like

the Power of 2 choices (P2C) version of Least Connection. In this algorithm,

the proxy randomly considers two possible downstream nodes and selects

the one that has the least number of outstanding requests from the current

node. Unfortunately, the node being picked might actually be more heavily

loaded than others since the proxy is unaware of requests forwarded by the

proxies in other pods.

LeastConnection and similar algorithms that rely only on a sidecar load-

balancer’s local state can perform well when the number of service replicas

is relatively low and workloads are evenly distributed across the upstream

nodes. Yet in a microservice deployment, this may not be the case. For

example, the applications provided by Deathstarbench, an open source

62

Up1

Up3

Up2

B1

B2

Figure 5.2: LeastConn only has information about outgoing requests leaving
a sidecar, not the actual queue lengths at the backend nodes.

collection of microservices, each contain between 21 and 41 unique mi-

croservices, each of which may be replicated multiple times [54]. Netflix, an

early adopter of microservice architectures, was reported to have over seven

hundred different microservices deployed over tens of thousands of virtual

machines as of 2015 [55]. These massive arrays of microservices form com-

plex topologies with shared services being accessed by many different types

of upstream components. Further, there might be geographical constraints

in large clusters leading to different client pods sending requests at different

rates to the backends. In such a dynamic environment, workloads can

easily become skewed, leading to an inaccurate local view of downstream

node load levels.

Least Connection Limitations: To see the intuition for why Least Connec-

tion can perform poorly, consider the situation in Fig 5.2, Upstream Node

Up3 has two outstanding requests to Backend B1 and one to Backend B2.

The other two upstream nodes each have one outstanding request to B2.

Thus the total number of outstanding requests at B1 is two while that on B2

is three. If now a fourth request arrives at the load balancer of Up3, then

the Least Connection algorithm on Up3’s LB, will send the request to B2

instead of B1, which would have been the optimal solution. If a centralized

63

1 2 3 4 5 6
Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

1:10 Nodes
2:10 Nodes
10:10 Nodes
40:10 Nodes

Figure 5.3: Changing from 1 to 40 frontends causes a significant increase
in the range of response times and tail latencies.

load balancer was being used, this issue would not arise.

Generally, with a small number of servers and clients where the clients

are all receiving roughly the same number of requests, this is not an issue

since the relative equivalence in the number of clients and servers mean

that these discrepancies will be small so each sidecar’s local view is a similar

match to the global one. However, that may no longer be true when there is

a large number of upstream nodes with different request characteristics to

the downstream nodes.

To empirically measure this phenomenon, we deploy a pair of microser-

vices and adjust the number of upstream nodes accessing a set of ten

downstream replicas. In order to focus on the impact of load balancing

across the downstream nodes, we configure the upstream service to be

very lightweight, and make the downstream service expensive (consuming a

250 msec service time). We deploy a custom sidecar load balancer similar

to Envoy running the Least Connection algorithm and use an HTTP load

64

1 2 3 4 5 6
Response Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e
of

 R
es

po
ns

e

Least Conn with 40:10 Nodes
Least Conn with 1:10 Nodes
Least Conn w/Redis with 40:10 Nodes

(a) Redis Load Balancer Performance

40 FrontEnds 1 FrontEnd w/Redis 40 FrontEnds
Load Balancer Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
an

da
rd

 D
ev

ia
tio

n
M

ea
n

LeastConn with 40 FrontEnds
LeastConn with 1 FrontEnds
LeastConn w/Redis with 40 FrontEnds

(b) Least Connection Mean of Standard Deviation

Figure 5.4: Using Redis to provide a global view of backend state makes the
response time distribution nearly identical to having a single centralized
load balancer (green and orange lines overlap), and similarly reduces the
variation in load across backends.

65

generator to stress test the system.

Figure 5.3 shows that as the number of upstream nodes increases,

the response time distribution widens significantly. The case with only a

single frontend (1:10) is representative of a traditional monolithic service

deployment where a centralized load balancer sits between tiers of the

application, while the other lines can represent distributed microservices.

Interestingly, the median response time remains similar (about 2.5 seconds),

but changing from 1 frontend to 40 frontends causes significant changes at

the head and tail of the distribution. This result is somewhat unintuitive:

one would typically expect adding more frontends to improve performance,

not hurt it!

The explanation for these results is that the sidecar load balancers are

making conflicting decisions due to lack of coordination – some requests are

sent to very lightly loaded servers which are able to respond very quickly,

while others queue up at overloaded servers, causing long delays. The

impact can be quite large: the range between the 10th and 90th percentile

increases by almost 5 times and tail latency degrades by more than 40%

when going from 1 to 40 upstream nodes.

Diagnosing Least Connection: We determined that there are two factors

that cause the response times of the system to degrade by such a large

amount:

1. the metadata that each sidecar load balancer holds locally becomes

stale much faster as the number of upstream nodes increase making

the load balancing decisions progressively worse, and

2. a larger number of upstream nodes accessing backends with heavy

requests can easily overload them, similar to the TCP incast problem

66

[56].

In order to prove the first point, we deployed a Redis service in our

Kubernetes cluster to provide a global view of backend load. The Redis

cache stored the active queue length of each downstream node. Before

routing a request, a sidecar load balancer would fetch queue length data

for all nodes from the caching service. The load balancer then updated

the cache to increment the queue length for the selected downstream node.

When receiving a response, the sidecar load balancer subtracted 1 for the

downstream node that sent the response. This made the Redis service a

global source of true backend queue lengths for all load balancers. With this

simple addition of a caching service we found that the overall performance

of a 40 upstream nodes is indistinguishable from that of using a single

upstream node (Fig. 5.4a).

To show the level of imbalance between downstream nodes when the

number of upstream nodes increases, we measured the total number of

requests sent to each downstream node at 2 second intervals. With this

data, we plotted (Fig 5.4b) to show the standard deviation across the ten

backends during each interval, averaged over the entire experiment. We

can see that the mean of the standard deviation of new requests received

every sampling interval for the 40 frontend case is much higher than the 1

frontend node case.

We conclude that response time degradation is caused by the burstiness

in the request profile which in turn is caused by inaccurate local data. This

is exacerbated when backend requests are expensive (which is often the

case), since even if all frontends send just one request to the same backend,

they will cause it to be completely overloaded. Thus we must combine load

balancing in the upstream nodes and overload control solutions in the

67

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (Seconds)

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 o
f R

eq
ue

st
s C

om
pl

et
ed

LeastConn 3 seconds timeout
LeastConn 20 seconds timeout

Figure 5.5: Using AQM to drop requests early helps the tail, but not the
head of the distribution, suggesting backends are still not evenly utilized.

downstream nodes to solve this problem.

Overload Control Approaches: Two general techniques to implement over-

load control are:

• Rate limiting, where upstream nodes purposefully slow their requests

to prevent backends from getting overloaded; often this is guided by

backpressure algorithms where the server lets the client know that

the server is overloaded.

• Admission control, where downstream nodes preemptively drop re-

quests to avoid excessive queueing; Active Queue Management (AQM)

algorithms try to intelligently drop requests or network packets to do

this in a graceful way.

Unfortunately, naively applying backpressure has been shown to lead

to system-wide hotspots and trick the system into upsizing or penalizing

the wrong service [54]. Admission control, on the other hand, is extremely

68

useful in controlling the number of requests on the server, but it does so at

the expense of “goodput" [54] directly affecting user experience.

To see the impact of an AQM approach that drops requests once they

exceed a response time bound, we repeat our experiment with forty upstream

nodes and ten backend nodes. In Figure 5.5 we show the impact of setting

a 3 second timeout versus the default system with a 20 second timeout.

Setting the timeout to a low value is similar to having an admission control

system that will not allow any request into the queue if they would take

longer than the timeout value. The results show that while the 3 second

timeout puts a hard cap on the tail latency, it doesn’t have much effect on

the head latency, indicating that load is still not evenly distributed. Even

worse, we find that the timeout-based system drops nearly 50% of the

requests entering the system in order to achieve this, and that the load

variation across backends is not significantly improved.

5.3 Least Connection Analysis

Join-the-Shortest-Queue, JSQ, has been proven to be a nearly optimal

load balancing algorithm, [29]. In JSQ, the arrival rate into each queue

is dependent on the length of the queue at that point in time, with the

probability of a queue receiving a new request decreasing as the length of

the queue increases. In the ideal case where all requests have the same

cost, JSQ can guarantee that the most loaded server will have at most one

more request in its queue than the least loaded server. For more complex

scenarios, [57] provides an upper bound to the load imbalance between any

two queues in the system. These properties ensure that load imbalances

will be automatically corrected by JSQ by preferring backends with lower

queue lengths. However, the JSQ algorithm assumes the load balancer

69

0 20 40 60 80 100
Number of Load Balancers

5

10

15

20

25

99
th

 P
er

ce
nt

ile
 W

ai
tin

g
Ti

m
e

JSQ
LeastConn

Figure 5.6: Simulating JSQ vs Least Connection shows how waiting time
rises with the number of load balancers.

has a perfect view of the backend queue lengths, which is only feasible in

a centralized situation with a single load balancer. Least Connection (LC),

on the other hand, operates in distributed client side load balancers with

incomplete knowledge of the backend queue lengths. In this section, we

argue that LC cannot hold up the same guarantees as provided by JSQ and

show why its performance degrades as the number of load balancers rises.

Simulation Analysis: We use a discrete event simulator to evaluate JSQ

and LC performance. In Figure 5.6 we show how the 99th percentile of

waiting time changes when simulating different numbers of load balancers

with 10 backends. For the JSQ case, we assume that all load balancers have

perfect information about the backend server queue lengths, so performance

is steady with no impact as we adjust the number of load balacners. On

the other hand, Least Connection sees a continual increase in tail response

time as the number of load balancers rises.

Least Connection performs poorly for two reasons. First, each LC load

balancer only has visibility into the subset of requests that it receives. On

average, we expect N load balancers to each receive 1/N fraction of the total

load. If N = 1, then LC is equivalent to JSQ, but as N rises, each load balancer

is only seeing a smaller fraction of the total load. Intuitively, we can expect

70

100 200 300 400 500 600 700 800 900 1000
Time

0

10

20

30

40

50

60

70

80

Qu
eu

e
Le

ng
th

100 200 300 400 500 600 700 800 900 1000
Time

0

2

4

6

8

10

12

Qu
eu

e
Le

ng
th

Figure 5.7: LC (top) sees both higher and more variable queue lengths than
JSQ (bottom) over time

LC to make worse decisions as N rises since it has less useful information to

base decisions on. Even if each load balancer were to try to account for this

by multiplying the load it is aware of by a factor of N, we cannot expect this

to be perfectly accurate due to the randomness in how requests reach each

load balancer. Balls and Bins analysis can be used to show that as N rises,

the difference between the most loaded and least loaded load balancer (and

thus the imprecision of their estimates) will increase based on log(N) [58].

Using our simulator, we measure the difference in queue length between

the server selected by our LC load balancer for each request and the server

that would have been selected if we had used JSQ. We find that with 20

load balancers, the median queue length difference is 3, and this rises to 9

when we increase to 100 load balancers.

The second challenge for LC is that each load balancer may only have

71

information about a subset of the backends. As N rises relative to the

number of backends, it becomes more likely that a load balancer will have

some backends for which it currently has no active requests, but this does

not mean that the queue for those backends is empty. In these cases, LC

simply picks a random backend with no active requests, leading it to behave

more similarly to a random load balancer. To illustrate this challenge, we

graph the queue length of each server over time under each load balancing

scheme in Figure 5.7 when there are 100 load balancers. The graphs show

that LC tends to have significantly higher queue lengths and that the spread

between the most and least loaded backend is very large. In contrast, JSQ

keeps a much lower average queue length (note the different y-axis), and the

queue lengths for all servers are correlated, implying that they are changing

based on the burstiness of the incoming workload, not based on random

decision-making. Note that here there are 100 load balancers, yet the queue

lengths on each server are on average around 30 for LC, implying that most

servers have zero active connections from most of the load balancers. As a

result, LC’s behavior is tending towards being uniformly random instead of

being able to intelligently use queue lengths.

Information Theoretic Analysis: To understand why LC does worse

than JSQ, we also perform an information theoretic analysis using the

concept of Shannon entropy. We compare the entropy equations for JSQ

and LC to show that LC has significantly higher entropy, meaning we expect

greater randomness in its output which will lead to poorer decision-making.

Let us consider the following situation with M backend servers, L frontend

load balancers, X requests arriving at the system in total, and at most Y

requests being seen by any of the L load balancers.

• When JSQ is used, the load balancers are aware of the exact queue

72

size in each of the backend servers. This state can be represented as

a vector, S[M], where each entry S[j] represents the queue size of the

backend j, with the maximum value being X. Assuming all requests

can be directed to any of the backends, the number of states in this

case can be, (X +1)M. If we assume, the probability of the system being

in any state is uniformly distributed then:

H[JSQ] = log2((X +1)M) =⇒ H[JSQ] = M ∗ log2(X +1)

• When Least Connection is used, each of the L load balancers has its

own view of the backends. The state in this case can be represented

by a matrix, S[L][M], where S[i][j] is the ith load balancer’s view of the

jth backend. Considering each load balancer can only see at most Y

requests, the number of states for each load balancer is (Y +1)M. Across

L load balancers then, the size of the state is ((Y +1)M)L =⇒ (Y +1)ML.

Hence, the entropy of the system in this case is:

H[LC] = log2((Y +1)ML) =⇒ H[LC] = ML∗ log2(Y +1)

Comparing the above values, we can see that H[LC]≥ H[JSQ] since ML∗

log2(Y + 1) ≥ M ∗ log2(X + 1), and that the uncertainty of LC grows linearly

with N. While our model of entropy is imperfect since not all states will be

uniformly distributed, the significant difference in entropy suggests LC will

tend to make decisions based on greater randomness than JSQ.

5.4 System Design

In this work, our goal is to show that better load balancing can be done by

combining AQM, backpressure, and a novel “confidence chip" distribution

scheme that allows upstream load balancers to perform rate limiting in a

self-organizing manner. The simple idea is that as requests flow downstream,

73

server metadata flows upstream to inform better load balancing. We wish to

keep each server under its maximum capacity, distributing the load evenly

through the system, without incurring overheads from explicit messaging

or requiring global coordination which cannot scale to large microservice

deployments.

Our framework is divided into two logical parts. First, we use “confidence

chips" as a form of load information to make the load balancers’ decisions

smarter. Confidence chips flow upstream from backend nodes, piggybacked

in the response headers of successful requests. Rather than just use local

information like the number of active connections, the load balancers use

the number of confidence chips they have received from different backends

as an indication of how likely they are to be able to handle additional requests

at this time. This allows the backend to help load balancers coordinate

request rates, without requiring any direct communication.

Second, BLOC uses overload control to restrict the number of active

requests on the downstream nodes. Downstream nodes preemptively reject

incoming requests if they will cause them to become overloaded. However,

rather than simply dropping the requests, the upstream load balancer takes

this as a hint both to back off from this server for some time and to retry

the request on a different server.

A final key design consideration is that we seek to avoid adding complexity

to the overall system deployment or adding centralized services that cannot

scale well to large systems. Thus we eschew approaches such as the Redis-

based global coordinator described previously. A centralized approach would

be difficult to deploy in practice and could incur high overhead in terms of

latency and resource cost if every request needed to access it in a large-scale

system. Just as importantly, we seek to support legacy code by incorporating

74

BLOC into the sidecar proxies deployed alongside applications. This allows

us to seamlessly add this functionality without any code modifications to

the actual applications.

5.4.1 Confidence Chips

BLOC uses "confidence chips" as a way for upstream nodes to quickly

learn which downstream nodes are above or below capacity. Each down-

stream node probabilistically returns a chip to upstream nodes piggybacked

with the response header. An upstream node views the availability of a chip

for a downstream as an indication that the particular node will have enough

capacity to fulfill a request. The upstream spends a chip to make a request.

The probability of a downstream node returning a chip is related to how

loaded the server is currently. This probabilistic distribution also serves

as a hedge against requests from upstream nodes that the downstream

is not talking to currently. We can reserve some capacity for upstream

nodes for whom we do not have an active request right now but who might

send a request to us soon. Also, since downstream nodes do not track

chips granted, the probabilistic distribution protects the downstream from

becoming oversubscribed.

Algorithm 2 details how BLOC processes each request. BLOC allows

users to provide a capacity value in the configuration for the backends. This

capacity value is used to limit the queue size in each individual backend.

Lines 2-3 show that if adding another request would push the current queue

size of the backend over the capacity configured then the request is rejected.

Otherwise the request gets processed (line 4).

Lines 5-9 of algorithm 2 show our “confidence chips" calculation. This is

a binary valued indicator sent along with each response to inform upstream

75

Algorithm 2 Backend Request Processing
1: function Handle(w: http.ResponseWriter, r: http.Request)

2: if Capacity and QueueLength+1 >Capacity then

Respond(TooManyRequests)

Exit

3: ProcessRequest(r)

4: if Random() < QueueLength/(0.8∗Capacity) then

5: chip← 0

6: else

7: chip← 1

8: Return chip bit with response

clients whether this backend has capacity available to handle more requests.

In order to determine the value of the confidence chip, a random number,

between 0 and 1, is compared against the ratio of capacity currently being

used on the backend (line 5). A confidence chip returned with the response

has a value of 1 (line 8) if the capacity ratio is lower than the random number.

Otherwise the confidence chip has a value of 0 (line 6). Furthermore, the

actual calculations are made against 80% of the defined capacity value to

provide some protection against overloading. This means that as the queue

length on the backend starts to approach 80% of its defined capacity, the

backend will start sending less and less chips with a value of 1. It will send

no chips with the value of 1 once queue length exceeds 80% of the defined

capacity.

Every node has a “capacity” value defined at the service level which

represents the number of requests it can have in its queue while meeting a

target SLO. When responding to a request, the nodes decide whether or not

to issue a chip to the upstream node based on the following formula:

76

r = uniform random number ∈ (0,1]

chip =

0, if r < q

0.8∗ServiceCapacity

1, otherwise

where q (QueueLength in backend request processing algorithm2) is the

number of requests currently queued in the downstream node.

In this case, we guarantee that at least 20% of the downstream node’s

maximum capacity will always be reserved for the upstream nodes that are

either not interacting with the downstream at the moment or have already

been granted a chip. The probabilistic nature of the equation means that

the number of chips generated during any given period of time will depend

on the load on the downstream node during that time. Hence, when the

server is lightly loaded it is more likely to send out chips whereas, during

times of higher loads, it sends a lesser number of chips.

5.4.2 Client Side Backoff and Retries

Algorithm 3 describes how each client sends requests to backends. We

saw in algorithm 2 that any request that pushes a backend’s queue size

beyond the defined capacity is rejected. In order to handle such cases, we

also define the number of times each request can be retried. The while loop,

lines 3-13 runs the overall algorithm. In line 4, we use the “PickServer"

algorithm, described in the next section, to choose a possible backend to

route the request.

If the server rejects the request, then it is reflected in the response from

the server, line 5. When this happens, the upstream node increments the

77

Algorithm 3 Retry and Backoff
1: function ProcessRequest(request)

2: retrynum← 0

3: while retrynum ≤ totalretries do

4: server = PickServer(servers)

5: response = server.Handle(request)

6: if response == TooManyRequests then . Server becomes “inactive"

7: retry++

8: server.chip← 0 . Reset “chips"

9: server.RcvTime←GetCurrentTime() . Calculate ResetInterval

(line 5 and 9, algorithm 4) from here

10: else

11: break

12: return response

number of retries for that request (line 7), resets all chips for that backend

(line 8) and sets the probe timer (line 9). At this point, that particular

backend is considered to be “inactive".

If the request is successful or we have exhausted the number of allowed

retries for the request, then the while loop (lines 3-13) is exited and the

response is returned. Irrespective of the status of the response, we also

note when the server received the last response. A request is dropped only

if all retries have been exhausted.

5.4.3 Server Selection

BLOC’s algorithm for server selection, Algorithm 4, starts by picking

two backends at random, lines 2-9. However, the algorithm takes care to

ensure that the servers selected are considered “active" by the upstream,

78

Algorithm 4 BLOC for Server Selection
1: function PickServer(servers)

2: server1← RandomSelect(servers)

3: // Either “ResetInterval" has passed since last response. . This

backend can be probed.

4: // Or the backend has a chip. . Backend is “active"

5: while ElapsedTime(server1.RcvTime) ≤ ResetInterval and

server1.chip == 0 do

6: server1← RandomSelect(servers)

7: server2← RandomSelect(servers)

8: while ElapsedTime(server2.RcvTime) ≤ ResetInterval and

server2.chip == 0 do

9: server2← RandomSelect(servers)

10: if server1.Reqs < server2.Reqs then . Select server with lower active

requests from this upstream

11: selectedServer← server1

12: else

13: selectedServer← server2

14: if selectedServer.chip ≤ 0 and ElapsedTime(selectedServer.RcvTime) >

ResetInterval then

15: selectedServer.RcvTime←GetCurrentTime() . Ensure this server is

not probed too soon

16: return selectedServer

or that a reset interval has passed since an overloaded server was last

contacted. An upstream considers a backend “active" if and only if the

upstream has a chip for that backend. Lines 5 and 9 of Algorithm 4 test for

79

this condition. Alternatively, lines 5 and 9 also test if the predefined reset

interval has passed since a response was last received from that backend. If

this condition is satisfied, then the upstream may select that server despite

it not being “active". This is because we consider the state of the backend as

unknown if at least the reset interval has passed since a response was last

received. This backend, despite being inactive, is chosen because we want to

probe inactive servers at regular intervals in order to update the upstream’s

metadata about them. However, when this happens we do not want to send

another probe to the same backend too quickly. This is ensured by updating

this backend’s “RcvTime" to the current time (lines 17-19). Unless a chip

for this backend is received, it will be rejected for all future iterations that

run in the next “ResetInterval" units of time (lines 5 and 9).

When we have found two randomly selected servers that satisfy one of

the conditions being tested in lines 5 and 9, we pick the one with the lower

number of pending requests, as known to this particular client, (lines 12-16).

Finally, this server is returned in line 4 of Algorithm 3. This is similar to

the LeastConnection algorithm but BLOC ensures that the servers selected

are unlikely to be overloaded.

5.4.4 Server Capacity

The capacity parameter plays an important role in determining the per-

formance of a system. This parameter forms an upper bound on the size of

the active queue of any upstream node in the cluster.

In the simplest case, a system administrator can specify a fixed Capacity

value for each microservice based on its expected service time and SLO.

The Capacity value times the service time gives an upper bound on request

queueing time. For simple services, this may be feasible, but for large-scale

80

applications with many microservices, or deployments on heterogeneous

hardware with different service costs, it may not be practical. Alternatively,

BLOC has a simple method to dynamically estimate the capacity. This

makes the system compute a cumulative average of the number of active

requests in its queue for 30 seconds. The system then uses this average as

the capacity value. We reset and recompute this average every 30 seconds.

It admits all requests by default in the first 30 seconds where the capacity

value is not defined yet. Improving this capacity estimate is an area needing

further research.

5.5 Implementation and Experimental Setup

5.5.1 Customizable Microservice Generation

Our experiment testbed has been inspired by the Deathstarbench [54],

which provides a set of premade microservice applications for system bench-

marking. However, Deathstarbench is limited in its flexibility to only support

its predefined applications. For BLOC, we built a customizable microser-

vice generator that can define arbitrary microservice topologies [53]. Each

microservice component is generated as a Python Flask service with a cus-

tomizable request processing time and can optionally drive the input of

many other services (fanout). The fanout is simulated by making parallel

requests to each downstream service. Configuration files are generated to

deploy the services in a Kubernetes cluster and automatically interconnect

them to form the service mesh.

81

5.5.2 Sidecar Proxies

We also built the BLOCProxy reverse proxy framework [53] from the

ground up to enable us to implement our algorithms with ease. The proxy

handles ingress and egress traffic, allowing it to implement both admission

control and load balancing. We redirect all incoming and outgoing traffic,

except traffic to and from the proxy itself, to the proxy input and output

ports respectively. The proxy maintains a local directory mapping pods to

service types as well as the Active and Inactive lists. During each request,

the proxy can select the next endpoint by using a load-balancing algorithm

defined through an environment variable along with other metadata.

Currently, the system implements the following load-balancing algo-

rithms:

• Random

• P2C Least Connection

• BLOC

The BLOC egress proxy modifies the HTTP headers generated by the

microservice application to add a field indicating if confidence chips were

generated. This is then interpreted and stripped out by the BLOC ingress

proxy on the upstream node that generated the request. As of now, our

implementation only supports HTTP1.1-based applications. However, our

approach could easily be extended to support other protocols such as gRPC,

broadening the types of applications that can make use of our design without

any code modifications to the applications themselves.

82

Figure 5.8: Experimental Setup

5.5.3 Control Plane

We also developed a simple control plane that uses the Kubernetes API to

monitor live endpoints for each service that has been deployed. The proxies

make REST API calls to the control plane pods, which run as a daemonSet

in the Kubernetes cluster to populate their local service directories.

5.5.4 Test Bed Setup

In order to focus on load balancing between a pair of microservices, we

use BLOC to run an application consisting of three layers of services (Fig 5.8)

with the total number of pods ranging between 12 and 51 in a Kubernetes

cluster running on 4 physical nodes.

The Gateway layer consists of a single pod that acts as the ingress gateway.

All requests to the cluster are forwarded to this gateway and are distributed

to the frontend layer. The frontend layer, in turn, is variably sized. It scales

between 1 and 40 pods. This layer sends all requests to the backend layer.

The backend layer has a constant size of 10 pods. We overprovision the

gateway and frontend layers so they will not become the bottleneck.

83

5.5.5 Workload

Most of our experiments have been conducted with a basic backend

service that simply sleeps for 250ms. However, we also test BLOC with

backend service costs between 100 to 500 ms and there is provision for a

variable service cost, which randomly selects a service cost uniformly in a

range configurable through the environment variables.

For load generation, we use two open-source tools:

• hey [59], which is a closed-loop load generation tool that allows us to

configure a concurrency for the requests we make

• a custom version of load test [60], that lets us define mean requests

per second and generates load according to a Poisson distribution with

this configured mean.

5.6 Evaluation

5.6.1 Experimental Setup

We ran our experiments on cloudlab [52] servers. A Kubernetes cluster

was created with four Intel Xeon servers, each with 20 cores and 196GB

of memory. We then deployed our control plane that ran a pod on each of

the servers. These pods form the service that is queried to get information

about the backends of services running in the cluster. We create an affinity

between our services and the physical nodes, such that the gateway and

frontend services run on 3 of the 4 physical nodes. The fourth physical node

can only schedule pods of the backend service. This was done to ensure

that the performance of the backend pods was not interfered with. We use

hey [?] as our closed-loop generator. We use the tool to send requests to the

84

1 2 3 4
Response Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

of
 R

es
po

ns
e

Open Loop
Closed Loop

Figure 5.9: BLOC (Cap=10) provides a substantially tighter response time
distribution by avoiding incast problems and applying careful admission
control

gateway for a fixed amount of time (5 minutes) where every request starts a

new TCP connection.

In most of our experiments we compare BLOC against Least Connection

with 40 frontends and a centralized JSQ approach. We implement JSQ by

using a single node in the frontend tier running the LC algorithm (since

LC with 1 node is equivalent to JSQ). This allows us to see how BLOC

compares against an algorithm with perfect load balancing information as

a nearly optimal baseline. However, in some of our experiments, the single

frontend node for the JSQ case can become a bottleneck leading to worse

performance than BLOC; we note these cases as they arise.

5.6.2 BLOC Overall Performance

We first compare BLOC, Least Connection, and JSQ to evaluate our

approach’s impact on response time distribution. Figure 5.9 shows the

85

response time CDF of each approach when the upstream nodes are accessing

a shared pool of ten backends. We compare forty BLOC upstream nodes with

a fixed Capacity parameter of 10 against LeastConnection with either forty

or one upstream node (which is equivalent to a centralized JSQ algorithm).

While the median response times of all approaches are similar, there are

dramatic differences in their response time distributions. When there are

forty upstream nodes, Least Connection sees a very wide response time

distribution, with the fastest 10% of requests finishing within 1 second and

the slowest 10% of requests taking about 4 seconds, giving a 10-90%ile

Range of 2.77 seconds. On the other hand, BLOC maintains a very narrow

response time window, with a range of 0.97 seconds. In fact, BLOC achieves

a tighter window than Least Connection running with a single upstream

node (we ensure that the frontend is not the bottleneck in these experiments

by using downstream backends with expensive service costs of 250 msec).

Thus BLOC’s distributed sidecars are able to effectively determine the

relative loads on different servers, improving overall system utilization and

providing very consistent response times.

Next, we vary the service cost of the backend nodes to understand the

impact on load balancer performance. Figure 5.10 shows the improvement

of BLOC over LC with forty frontends and 10 backends with a per request

service cost ranging from 0.1 to 0.5 seconds. We use boxplots to show the

median (black line), upper and lower quartiles (box edges), and 90%tile tail

latency (whiskers). The response distribution of BLOC with 40 frontends is

much closer to that of Least Connection with a single frontend compared to

Least Connection with 40 frontends. The presence of outliers beyond the

upper whiskers indicates a noteworthy observation: the 99th percentile tail

latency of the BLOC when configured with 40 frontends, closely parallels

86

0.1 0.15 0.2 0,25 0.3 0.35 0.4 0.45 0.5
Service Time (Seconds)

0

2

4

6

8

10
Re

sp
on

se
 T

im
e

(S
ec

on
ds

) JSQ with 1:10 Nodes
BLOC 40:10 Nodes
LeastConn with 40:10 Nodes

Figure 5.10: BLOC (Cap=10) provides a substantially tighter response time
distribution by avoiding incast problems and applying careful admission
control

that of the Least Connection when it operates with only a single frontend,

whereas that of Least Connection with 40 frontends diverges from Least

Connection with 1 frontend as the service cost increases. BLOC’s perfor-

mance is similar to a centralized JSQ load balancer, although since it lacks

perfect information it cannot maintain as tight a responset ime distribu-

tion. However, with a very low backend service time (0.15 and below), we

see that the single JSQ load balancer is the bottleneck, resulting in worse

performance than BLOC.

BLOC relies on its estimate of downstream capacity to control its AQM

algorithm and allocation of confidence chips. To illustrate the impact of the

Capacity parameter, we evaluate several fixed settings and BLOC’s dynamic

capacity estimation technique. Fig 5.11a shows the difference in perfor-

mance when we used a Capacity of 10 (which our tests suggest is optimal for

this configuration) Capacity of 15 (which tends to too aggressively overload

87

1 2 3 4 5 6
Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

BLOC Capacity 10
BLOC Capacity 15
BLOC Dynamic Capacity
LeastConn

(a) BLOC Capacity Sensitivity

Cap=15 Cap=10 Cap=Avg
Capacity Setting in Backends for BLOC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
an

da
rd

 D
ev

ia
tio

n
M

ea
n

BLOC Capacity 15
BLOC Capacity 10
BLOC Dynamic Capacity

(b) BLOC Capacity Burstiness

Figure 5.11: Sensitivity to capacity and impact on load imbalance

88

servers), and our dynamic Capacity value based on the observed average.

All of these approaches provide an improvement over LeastConnection, but

setting an appropriate value gives a tighter bound.

To further analyze the impact of Capacity, Figure 5.11b shows the level

of imbalance on the downstream servers. This is measured by looking at

the number of requests served by each node over time and calculating the

standard deviation between them during each time interval; we then plot

the mean of this variability. The results show that our hand-tuned Cap=10

setting provides the greatest benefit, but that using the dynamic averaging

approach also keeps the variance relatively low.

5.6.3 Benefits of Different BLOC Components

BLOC employs several techniques to avoid overload and keep downstream

nodes balanced, so in this experiment, we quantify the benefits of each

approach. In Figure 5.12a, we show the CDF of AMQ, AMQ with BLOC

techniques and Least Connection. We can see that using AQM to drop

requests that exceed the downstream node’s capacity (without the rest of

BLOC’s functionality), provides a substantial improvement in response time.

However, this only shows the performance of requests that are successfully

processed, and as shown in Figure 5.12a, AQM drops about 4,000 of the

12,000 requests sent during the experiment. Adding BLOC’s backoff tech-

nique provides a further benefit to response time by reducing the chance

that requests will be added to a long queue, however, it leads to an even

higher drop rate. Adding support for Retries substantially improves the

system, eliminating most of the drops and also providing a further reduc-

tion in the interquartile range. The final BLOC system that supports AQM,

Retries, and Backoff provides a significant improvement to response times

89

over LeastConn and reduces the number of failed requests by 22% (from

446 to 346) compared to the system with only AQM and Retries.

5.6.4 BLOC Under Bursty Workloads

The prior experiments used the Hey benchmarking tool, which is a

closed-loop load generator that seeks to continuously saturate the system.

While this is an effective way to test the system on the brink of overload, it

may not be representative of real web workloads which tend to have bursty

periods of light and heavy load. In this experiment we use a customized

version of loadtest [60], which is an open loop generator that can send

requests at variable rates. While the official loadtest distribution follows

a uniform distribution, our modified version sends requests following a

Poisson distribution which gives a more realistic bursty arrival process.

In Figure 5.13 (Left-axis bars), we show the performance of BLOC relative

to LeastConnection with forty upstream nodes and ten downstream nodes

under increasingly intense request rates. The results show that BLOC pro-

vides a substantially better 90th percentile latency, allowing it to support a

much larger incoming request rate than LeastConnection. LeastConnection

becomes overloaded with very poor performance after a workload of 35

req/sec, whereas BLOC is able to gracefully handle loads as high as 47

req/sec.

While BLOC provides a dramatic improvement in response time distri-

bution at high load, it is in part due to its preference to drop requests that

will cause excessive queuing. To evaluate this, Figure 5.13 (Right-axis lines)

shows the percent of requests dropped at each request rate for LeastConnec-

tion and BLOC. At lower request rates, BLOC still drops a small fraction of

requests due to the bursty arrival pattern which can cause spikes in queue

90

1 2 3 4 5 6
Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s C
om

pl
et

ed

LeastConn
AQM
AQM+Backoff
AQM+Retries
AQM+Backoff+Retries

(a) BLOC Components Response Time Comparison

AQM Only AQM+Backoff AQM+Retries AQM+
Backoff+
Retries

BLOC Components

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f R
eq

ue
st

s

Accepted
Rejected

(b) BLOC Components Throughput Comparison

Figure 5.12: The combination of all BLOC components ensures a tight
response time distribution while minimizing request drops

91

10 15 20 25 30 35 40 45
Requests Per Second

0

2

4

6

8

10

90
th

 P
er

ce
nt

ile
 R

es
po

ns
e

(S
ec

on
ds

)

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s D
ro

pp
edBLOC Drop Rate

LeastConn Drop Rate
BLOC Response
LeastConn Response

Figure 5.13: 90th percentile response time (Left-axis bars) and dropped
requests (Right-axis lines) with Poisson load generated at different rates

length2. Nevertheless, BLOC’s drop rate is reasonably low, and even when

facing an overloaded system at the highest request rate, BLOC drops only

16% of requests compared to LeastConnection dropping more than 80%.

5.6.5 Handling of New Resources

In this experiment, we start out by sending requests with loadtest [60]

(open loop) to a cluster with 40 frontend services and 10 backend service

instances. We increase the scale of the backend service by one pod a

minute into the experiment (total 5 minutes) and plot the response times in

Figure 5.14. The load being sent to the cluster makes the cluster slightly

higher than the capacity of the cluster. We see that under this amount

of load, Least Connection’s response times rise quite high very fast. Both

Least Connection and BLOC have a mean response time of 5000ms in the

first minute. But even after adding a new pod, Least Connection is still
2In fact, we believe BLOC’s drops may be due to a bug causing the gateway node to

incorrectly drop requests even though the downstream nodes are not full.

92

01 02 03 04 05
Time (Second)

0
2500
5000
7500

10000
12500
15000
17500
20000

Re
sp

on
se

 (m
s)

LeastConn
Before Start
After Start

01 02 03 04 05

Time (Second)

BLOC
Before Start
After Start

Figure 5.14: BLOC and Least Connection behavior when adding new re-
sources to the cluster

overloaded because it cannot effectively rebalance the queues on its servers.

This would likely lead to LC needing to add another pod to stabilize the load.

On the other hand, BLOC is able to utilize the newly added pod better and

quickly reduces the mean response time to 3400ms, a reduction of 32%

reduction in mean response time. This illustrates the importance of load

balancing not just in reducing response times, but in reducing the total

resources that must be assigned to the system.

5.6.6 A Real Variable Cost Backend Application

We use a real application that resizes images in response to incoming

requests. This resizing application has a significant variance in its service

cost, between 40 and 650ms. Figure 5.15a shows that BLOC is still able to

make good decisions to optimize the response time of each request, despite

the large variance, matching the performance of a single LC frontend load

balancer.

93

0 2 4 6 8
Response Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e
of

 R
es

po
ns

e

LeastConn with 40:10 Nodes
JSQ with 1:10 Nodes
BLOC 40:10 Nodes

(a) High, Variable Cost Application

0.5 1.0 1.5 2.0 2.5 3.0
Response Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e
of

 R
es

po
ns

e

LeastConn with 40:10 Nodes
JSQ with 1:10 Nodes
BLOC 40:10 Nodes

(b) Low Service Cost Application

Figure 5.15: BLOC, JSQ vs Least Connection for applications with different
service costs

94

0 2 4 6 8 10
Response Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

of
 R

es
po

ns
e

LeastConn with 40:10 Nodes
JSQ with 1:10 Nodes
BLOC 40:10 Nodes

Figure 5.16: BLOC, JSQ vs Least Connection for a complete chain

5.6.7 Low Backend Service Cost

When the service cost of the backend layer is low, the frontend layer

becomes the bottleneck. Scaling up the number of frontend layers im-

proves performance. In this experiment, we have an app that rotates images

in response to incoming requests and the service cost for this backend

varies between 10 and 80ms. Figure 5.15b shows us that while both

LeastConnection-with-40-frontends (LC40) and LeastConnection-with-1-

frontend (LC01) have a narrow response time distribution, LC40 has a signif-

icantly better performance. Further, we see that BLOC-with-40-frontends

has a response time distribution that is even narrower than LC40 and has

a shorter tail than LC40.

5.6.8 BLOC vs Least Connection for a complete microservices chain

In this experiment, we combine image resizing (highly variable service

cost) and image rotation (low service cost) components into a single backend

95

5 8 9 10 11 12 15
Capacity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Re

sp
on

se
 T

im
e

W
id

th
(m

s)

0

1000

2000

3000

4000

5000

6000

Fa
ile

d
Re

qu
es

ts

BLOC Response
BLOC Drop Rate

Figure 5.17: Impact of Different Values of Capacity - 90th percentile re-
sponse time (Left-axis bars) and dropped requests (Right-axis lines) with
Poisson load generated at different rates

application. Our experience dictates that estimating the capacity of such a

variable and multi-layered backend is extremely difficult. In such cases, it

is easier to use a dynamic capacity estimate. Figure 5.16 shows that BLOC

with the dynamic capacity estimation algorithm can easily outperform Least

Connection in such scenarios.

5.6.9 Impact of BLOC Parameters

In figure 5.17, we measured the width of the response time, the difference

between 10 and 90 percentile responses, as we changed the static capacity

values (Left-axis bars). This result indicates that results deteriorate quickly

as we move away from the optimal capacity value. The dynamic capacity

value, discussed in this paper, protects the system against such performance

degradation by continually correcting the capacity by measuring real-time

performance. We also measured how the number of failed requests changed

as we changed the capacity value (Right-axis lines). This result is quite

96

0 1 2 3 4 5 6 7
Response Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

til
e

of
 R

es
po

ns
e

LeastConn with 40:10 Nodes
BLOC Dynamic 40:10 Nodes
BLOC 10 40:10 Nodes

Figure 5.18: Dynamic and Static BLOC vs Least Connection Variable Service
Cost

intuitive in that as we increase the capacity values, the number of errors

decreases.

5.6.10 BLOC Performance with Variable Service Cost

Finally, we present a measure of the performance of BLOC vs. Least

Connection under variable service cost. The service cost was chosen to be

normally distributed with a mean of 250ms and a 125ms standard deviation,

mimicking the parameters of the image processing application. In these

experiments, refer to figure 5.18, we saw that both static and dynamic BLOC

outperform Least Connection.

5.7 Related Work

In this work, we have combined load balancing with overload control:

• Load Balancing approaches typically attempt to solve issues related

97

to heterogeneity, performance, and uniform load distribution.

• Overload Control are admission control schemes that let servers con-

trol the rate at which clients can send requests.

5.7.1 Load Balancing

There is a wide range of work on load balancing for web [28] and cloud

applications [31]. In microservices architectures, a load balancer plays

an important role in terms of distributing workloads across multiple and

various instances. There are two types of load balancers based on where

the load balancer is placed, server-side and client-side. A study of trade-offs

between server-side and client-side load balancers is presented in[61]. We

have based our work on evaluating the LeastConnection algorithm, which

is a client-side approximation of the JSQ algorithm [29], often used in the

microservices environment.

Research on the performance of load balancers, recently, has generally

looked at topics like handling heterogeneity[32], uniform load balancing

with consistent connections[33], and so on. While it has been established

that with centralized load balancing it is not possible to significantly improve

JSQ [29], we find that this result does not port over to distributed client-side

load balancing. In this work, we tweak these load-balancing algorithms to

be aware that their data might be stale and to take overcommitment into

account. As far as we know, there is no other work that takes a look at the

load-balancing algorithms in microservices networks.

5.7.2 Overload Control

Overload on a system can cause catastrophic failures[62] and the idea

behind overload control is to shed any excess load before it consumes any

98

resources[63]. In this work, we primarily use active queue management

(AQM) to shed extra load. However, we do not want to sacrifice “goodput"[54]

and as such build overcommitment and retries into the system. To our

knowledge, there have been no prior attempts to use overload control toward

load balancing in microservices.

5.7.3 Load Balancing with Server Feedback

There are two other systems [34], [7], that we know of, that incorporate

feedback from the servers into how requests are distributed. In [34], the load

balancer gets resource usage statistics from the servers to make its decisions.

In our previous work [8], we have also used a similar feedback loop along

with a measure of the server capacities. In a distributed load-balancing

architecture like microservices, however, this leads to convergence issues. In

[7], the authors use overload controls to ensure no backends are overloaded.

However, the low target service cost of [7] enables communication between

all clients and all servers, in the form of registration messages, allowing for

a complete flow of information. BLOC works with a much higher service

cost which implies that it needs to load balance and protect against overload

without any node-to-node messaging.

5.8 Conclusions

Least Connection is a popular algorithm to balance load in microservices

architecture and is based on Join the Shortest Queue, which has been

proven to closely approximate optimal load balancing in a single node

centralized load balancer. In the microservices world, the load balancer

has moved from being a single centralized node to multiple instances each

attached to a client service (upstream nodes). Here, Least Connection finds

99

it difficult to maintain the veracity of its metadata cache, which can atrophy

quickly. This leads Least Connection to make bad load-balancing decisions

in aggregation. This in turn leads to a significant widening of the response

time distribution and the lengthening of the tail.

In our framework, BLOC, we show that using overload controls judiciously

overcomes this problem and is a far simpler solution than maintaining a

distributed state. We also show that BLOC significantly improves overall

performance. In our experiments, response time distribution improved by 2

to 4 times and tail latency did so by nearly 2 times. Overall, our results show

that carefully combining overload controls with load balancing can lead to

consistent response time despite the presence of a large number of frontends

sending requests to a shared set of backends. BLOC is able to guarantee

this performance consistency without sacrificing either user experience (by

dropping requests) or adding to the overall load and complexity of the system

(by sending metadata messages or using centralized caching services). We

also show that BLOC can work with systems with a wide range of service

costs and can handle variable service costs given an appropriate capacity

estimator function. Our goal for BLOC is for it to become a more generic

load-balancing algorithm able to support systems in different operating

ranges and our work here indicates that possibility. Further work on BLOC

can be directed at exploring various capacity estimator functions that would

further BLOC towards this goal.

Dynamic capacity estimation is a significant area of research in both

industry and academia using techniques from queuing theory, machine

learning, and dynamic programming among others. In this paper, we show

that a simple running average method renders BLOCmuch more performant

than state-of-the-art load-balancing algorithms. Thus investigating even

100

more powerful methods in the context of BLOC is one research direction

worth exploring.

We have created a repository to enable anyone to refer to and run the

code to verify our results at

https://github.com/MSrvComm/Experiments.

Acknowledgements: This work was supported in part by NSF Grant

CNS-1837382.

101

Chapter 6: Load Balancing and Generalized Split State

Reconciliation in Event Driven Systems

Event driven applications are often built with message queuing systems

that provide no temporal upper bound on message delivery. However, many

modern event driven applications, like a system inferring traffic conditions

and generating recommendations to road users based on sensor data, are

latency sensitive. Traditional message queuing systems use static load

assignment algorithms that guarantee event ordering while mostly ignoring

a temporal upper bound on message delivery. Another class of message

queuing systems use stateless operators which deliver messages (events)

quickly but pass the burden of stream state management to user applica-

tions. Synchronous communication patterns, on the other hand, provide

an upper bound for message delivery while ensuring message ordering but

unnecessarily bind limited resources reducing efficiency.

In this paper we explore load balancing choices in asynchronous systems

and their impact on queuing delay. We then propose a load balancing frame-

work, SMALOPS, for event driven applications with dynamically changing

load and quick message delivery requirements. Our experiments confirm

that with smarter load balancing, the 99%ile response times for events can

be improved by as much as 73%, compared to traditional message queuing

systems. SMALOPS introduces the following:

• A load balancing algorithm that can significantly reduce queuing delay

in message delivery systems.

• Mechanisms enabling consumers to recover stream state when either

the message delivery system does not support stateful operators or the

102

state has been split by moving streams between operators.

6.1 Introduction

Figure 6.1: An example of an asynchronous architecture. IoT devices send
messages to edge clouds. The edge clouds in turn forward those messages
messages to cloud gateways (CGW) which forward them to Kafka brokers to
be consumed by some consumer service.

Message queues are a popular tool for building event driven services. Tra-

ditional asynchronous services have a fire and forget model where messages

tend to trigger a change of state of some downstream application(s). Usually,

queuing delay is ignored since typical asynchronous applications have a

103

high tolerance for state change latencies. For example, when operating

one’s bank account, it is often acceptable for transactions to remain in

“transit" for days without updating the state of the account. In other cases,

the state change latency requirements are relaxed as such a state might

be hidden from users, such as in log processing applications. As far as

message delivery times are concerned, message queuing delay, message

queuing systems make no guarantees.

Some message queuing systems provide strong message ordering guar-

antees leading such systems to disregard skewed load build-up. Further,

most message queuing systems treat load balancing and stateful stream

operations as orthogonal design choices. Systems like Apache Kafka assign

load statically for the lifetime of the streams. While this prevents against

split stream state, such a system is unable to handle a massive scale [64] or

significantly skewed input [65]. Other message queuing systems like NSQ

[23] offer a better scaling profile by foregoing stateful stream processing

completely.

There is an emerging class of applications that use message queuing

systems to integrate physical systems to data intensive applications. [64].

These applications , figure 6.1, operate on streams of data bounded by the

notion of “freshness" imbibed in the messages that constitute the streams.

Informally, we define this “freshness" to be a temporal bound beyond which

the information carried by the message looses its relevance. Mostly, such

freshness of messages can typically be guaranteed by splitting the streams

and balancing them across multiple message queues, where the queues are

statless operators. If an ordering of the meessages are required then it is

up to the consumers of the messages to rebuild that ordering. Generally

speaking, if the message originate from a multitude of sources and are split

104

across a variety of processors then finding a consistent, strict order is a very

hard challenge. On the other hand, building data intensive cyber-physical

systems using synchronous patterns, where the source of the data waits

for a response to the request before sending the next request, is wasteful of

the limited computing resources available in physical systems.

In this work, we present SMALOPS, which makes two primary contribu-

tions:

• A load balancing algorithm, focusing on the heavier flows (in terms of

messages per unit time) thus reducing state tracking overhead, that is

able to respond to dynamic workload changes.

• Such an algorithm affects a split in the streams that it operates on,

thus we also discuss a mechanism to rebuild message ordering to

support stateful stream processing.

SMALOPS optimizes for queuing delay while being cognizant of the de-

sirability of stream state and fully aware of possible migrations of local

application state stored in the downstream services. Finally, SMALOPS

is also biased towards keeping larger streams pinned and migrates them

only when absolutely required. As per our knowledge, SMALOPS is the first

framework of its kind.

We implemented SMALOPS as a Go based framework on top of Apache

Kafka v3.3.1 and deployed it in a Kubernetes cluster. Our evaluations show

that SMALOPS can improve the 99th%ile queuing latency for streams by as

much as 73%. Though SMALOPS is built on top of Apache Kafka, it is not

dependent on any Kafka specific features. We demonstrate the principles

behind SMALOPS in a manner completely agnostic of the underlying system.

105

Figure 6.2: Message Queuing System

6.2 Background and Motivation

Asynchronous Services: Services can be integrated using asynchronous

communication, typically using a message bus. When integrated in such

a fashion, the component services can be truly autonomous and are not

tightly coupled with any other service. In asynchronous services, any opera-

tion that changes the “state" of a service generates an “event". Events trigger

a “message" being sent out from that service to a message queuing system.

Other services in the application, can register an interest with, “subscribe

to", the message queuing system, figure 6.2, to be notified when messages

related to one or more event types, “topics", are received. Topics can be

further subdivided into “streams", which are streams of related messages,

“key"-value tuples, within a topic.

Asynchronous services operate solely by propagating event notifications

(messages) through the system. Upstream services communicate with

downstream ones by sending messages to a topic. When downstream

services receive these messages, they update their state and may generate

their own events and associated messages. This communication pattern

makes no guarantees about the transmission latency of these messages.

106

Traditional systems that use such communication patterns are typically

applications that can tolerate these chains of state changes to complete in

arbitrary amounts of time.

A great advantage of asynchronous services is that these systems can

scale much better compared to synchronous systems, since the services are

not coupled and thus unencumbered by the demands of dedicated resources

waiting for responses.

Message Queuing Systems are, at their core, producer-consumer sys-

tems. They accept incoming messages from a producer, store them in a

queue, inform any consumers of newly arrived messages and track how

much each consumer has processed amongst other possible features. Most

messaging systems have a format that allows the producer to specify the

“topic" the message belongs to. Consumers also specify the topics they are

subscribing to. Messaging systems further subdivide all messages received

on a topic into “partitions" (internal queues). A partition is a messaging

system construct to assist the messaging system to scale. The algorithm

for allocating messages to partitions vary by implementation, are generally

rudimentary in practice and is the subject of investigation of this paper.

In order to understand this topic further, we will use two messaging

system examples, Apache Kafka [22] and NSQ [23]. In case of Apache Kafka,

the messages can contain a “key". When the messages do not contain a key,

they are randomly allocated to a partition. When the messages contain a key,

the partition allocated corresponds to a hash of the key. Thus messages with

the same key on the same topic always end up in the same partition. This

approach allows Apache Kafka to guarantee a total ordering of messages

within each partition (a partial order in the system). NSQ, on the other hand,

uses a simpler approach to partitioning, in that a copy of every message is

107

sent to all partitions and one of those copies are sent to a randomly selected

consumer, completely ignoring any “key". Thus NSQ offloads the ordering

problem to the consumer. While Kafka is overly restrictive in associating

keys to partitions, NSQ is overly flexible allowing for a per message decision

making. We aim to find the optimal balance between the approaches.

Load Balancing: We also have investigated this partitioning problem

from a load balancing point of view. Both NSQ and Kafka take the approach

that given enough incoming messages, random allocation and/or hashing

would balance the number of messages on each partition and thus the

load on each consumer. However, there are several examples in industry,

[66] [25], where static load balancing policies resulting in skewed load

assignments have led to complex system architectures. Related work, [8] [9],

demonstrate that the accepted load balancing algorithms are inadequate

in modern service deployment patterns. The random algorithm, amongst

others, has been specifically investigated in [29]. In this paper, we take a

look at the hashing algorithm as load balancing has become important in

asynchronous services due to the emergence of a new class of applications.

Let us consider the earlier example of a traffic application that upon

receiving signals from different sensors in geographical vicinity infers traffic

conditions and relay traffic related recommendations to road users. This

system has to be built as an asynchronous system because we do not want

to 1) unnecessarily tie up the limited resources available in the sensors

sending the signals and 2) as the data generated from an area increases,

we would want to dynamically scale the application up. At the same time

though, we also care about the queuing delay through the system. As

discussed above, current messaging systems are incapable of supporting

this new breed of applications. The primary reason is that both random and

108

hash-based allocation policies do not consider current and/or dynamically

changing load conditions. Hence this work focused on load balancing in

asynchronous systems.

Message Order and Consumer State: There are a couple of other fac-

tors that are typical to these applications that will need to be considered

when discussing migrating load between partitions of messaging systems.

Many of these new applications, an example is discussed above, depend on

maintaining a strict order of messages. In this paper, we focus on the prob-

lem of migrating the streams but also discuss mechanisms that enable the

consumers to maintain ordering of messages when streams are migrated.

In many of these cases, the consumer might also maintain a local state

corresponding to each key (“stream") and we discuss at length our reason-

ing behind how we make our algorithm cognizant of the requirements of

migrating that state.

6.3 System Design

The primary idea behind SMALOPS is detecting and managing the “heav-

ier" streams (ones that are sending a relatively higher number of messages

per unit time). The intuition is that the majority of the load can be balanced

by balancing the heavier streams. We use a slightly modified version of the

lossy counting algorithm [67] to detect these heavy streams. Next, we define

a “size" for each partition proportional to the rate of messages incoming to

it. SMALOPS then uses the power-of-two random choices algorithm, [11],

to select a partition to which a new “hot key" is assigned. The rebalancing

problem is posed as a linear integer programming problem, which is then

solved using a heuristic. This heuristic is biased towards keeping the larger

streams pinned to the same partitions as much as possible. The reasoning

109

behind this is that when a stream is migrated to a new partition and thus

possibly to a new consumer, the messages need to be queued for a while to

ensure all older messages belonging to the streams are processed first. Thus

it makes sense to migrate many smaller streams than few larger streams.

Smaller streams have more infrequent messages implying that they already

can tolerate some delay relative to larger streams. Also, more streams, with

lesser number of messages per stream, means lower average waiting time

for each stream. Another reason for keeping larger streams pinned as long

as possible, is that size of locally stored application state on consumers

might be related to the “size" of the stream. Thus such a bias might help

reduce state migration costs.

We propose our framework to consist of two parts - the input side and

the output side. The input side consists of gateways that accept incoming

messages and apply the load balancing algorithm and the output side

consists of the consumers that operate on the stream of messages. In

between the two, there is a Kafka cluster integrating the two sides.

The input side gateways are hierarchically arranged into two sets of

gateways:

• This first set of gateways simply accept all messages and map each key

in the message metadata to a gateway in the second layer.

• The gateway in the second layer then applies the load balancing algo-

rithm.

The input side is split into two layers mainly to avoid having to imple-

mented distributed algorithms to detect “heavy" streams. These algorithms,

[68] [69], depend on being able to talk to different nodes in the layer, which

would increase complexity by further necessitating a node discovery algo-

110

rithm.

Instead, our scheme combines messages belonging to the same key

from different layer 1 gateways to the same layer 2 gateway. The layer 1

gateways could themselves use a load balancing scheme, for example based

on weighted distributed hash tables [70]. However, we leave that for future

research. Our current paper assumes that this can be done efficiently and

focuses on reducing queuing delays in message queues.

While we focus on the input side in this paper, the consumers (the output

side) are ultimately responsible for rebuilding the ordering guarantees using

a novel protocol that requires them to synchronize to some extent or by

stitching together the streams further downstream.

A major goal of this paper is to improve on the load balancing algorithm

which assigns streams statically. SMALOPS introduces a finer-grained

stream balancing algorithm that requires us to maintain some state about

the stream. However, the design of SMALOPS aims to minimize the amount

of state that needs to be stored.

Once the heavier streams are identified, a significant next step is to

correctly identify the partitions that are candidate for migration. SMALOPS

is biased towards migrating smaller streams, keeping the larger ones on the

same partition as much as possible. Consumers block messages on a stream

when it is migrated allowing older messages of the stream to be processed

first. Let us consider a stream S1 whose messages are ordered as S1M(1),

S1M(2), S1M(3) and so on. Let us further consider that stream S1 is mapped

to Kakfa partition P1 and the consumer C1 is listening on the partition P1.

Now let us suppose that stream S1 gets migrated to another partition P2 and

a different consumer C2 is listening on partition P2. Further, suppose the

first message of S1 received by partition P2 after this migration is S1M(n+1).

111

The header of this message will contain information that will tell partition

P2 that S1 has been migrated from partition P1. On the other hand, when

consumer C1, listening on partition P1, receives the message S1M(n), it will

contain header information that tells C1 that stream S1 has been migrated

to partition P2 and thus consumer C2 will now receive newer messages of

stream S1. At this point consumer C1 will send a synchronization message to

consumer C2, letting it know that C1 has received the lass message of stream

S1 that was sent to C1. C2 will queue the S1M(n+1) message and process it

only after receiving the synchronization message from C1. Towards this end,

SMALOPS extends the stream metadata with the “Message Set" concept to

enable downstream applications to rebuild stream state.

As the load of the streams across the system change, SMALOPS’ stream

rebalancing algorithm attempts to achieve better load assignment to par-

titions relative to rudimentary algorithms currently in use. The random

load balancing algorithm can perfectly balance load given enough time

but suffers from large skews in load assignment in the short term [29].

Furthermore, the random algorithm also splits the streams. The key-based-

hashing load balancing policy prevents the streams from splitting, but it

is a stateless algorithm that statically assigns keys to partitions without

considering the actual load associated with each key. SMALOPS aspires to

assign load equally to the partitions while providing a general approach to

reconciling split streams..

The overall goal of SMALOPS is that, given a set of partitions, P =

{p1, p2, ..., pm} and a set of keys assigned to these partitions KP = {{Kp1},{Kp2}, ...,{Kpm}},

the aim of SMALOPS is to achieve:

R{kpi} ≈ R{kp j}∀i, j ∈ {1, ...,M}∧ i 6= j (6.1)

112

where Rk = ∑ j Pk, that is Rk is the sum of sizes of the hot keys mapped to the

partition Pk and R{kp j} is the rate of incoming messages for all hot keys on

partition Pj, the “size" of the partition.

6.3.1 Hot Key Analysis

We use the lossy counting algorithm to detect the heavier streams, with-

out needing to maintain state for every stream. SMALOPS uses an error

tolerenace of ε = 0.001 and the corresponding counting window width of

w = 1
ε
. This means that the upper bound of the error is err ≤ εN, where N is

the number of messages received so far. SMALOPS deviates from the lossy

count algorithm by resetting N after every counting interval w. We do this

with the assumption these systems are both long running and the actual

keys are dynamic, thus we do not want to track any key that is not “hot" in

the current interval. This allows us to save on the amount of state we need

to store in the gateways. However, this is easily extensible to use a rolling

window or maintain a small amount of history.

6.3.2 Stream Balancing

Stream balancing when there are no keys involved can simply use the

power-of-two-random-choices, [11], algorithm to balance each message

independently for better performance than random [29]. The challenge lies

in balancing the streams where each stream is identified with a key. In

order to do this, we define an absolute error function to determine how well

the streams are balanced:

ELB = ∑
j
|RPj −Ravg| (6.2)

113

where ELB is the load balancing error, RPj is the rate of incoming messages

into the Pj partition and Ravg is the average rate of incoming messages into

the gateway across all partitions. The goal of SMALOPS is to migrate as few

and as small streams as possible in order to minimize the error. In other

words, we want the total number of messages arriving at any partition to

be nearly equal at any point of time.

We decided to use equation 6.2 since it would allow us to use linear

integer programming as a possible solution approach. However, linear

integer programming solutions are notoriously hard, belonging to the NP

hard class of problems. Thus we have used the heuristic described here in

our solution.

The stream balancing algorithm in SMALOPS starts with dividing the

partitions into two sets - the “underloaded set", where the “size" of all the

partitions in the set is lesser than average of the system, and the “overloaded

set", where the size of all partitions are greater than the system average.

For each partition in the “overloaded set", we select a set of streams, K{M},

for possible migration to one of the partitions in the “underloaded set". We

define K{M} = {k j : k j ∈ KJ ∧Rk j ≤ Rgateway−Ravg}, where KJ is the set of all hot

keys on that particular gateway, Rgateway is the total rate of incoming messages

(for hot keys) on the gateway and Rk j is the rate of incoming messages for the

key k j. That is all streams selected for possible migration have a “size" that

is lesser than the difference between the overall size of the partition (sum of

sizes of all streams mapped to that partition) and the average of the partition

sizes as seen by that gateway. When selecting streams from this set K{M},

we first sort the keys according to descending size. Thus we migrate the

largest stream we need to but no larger. This creates a bias in the system

towards keeping the larger streams pinned to the same partition while still

114

reducing the number of streams that need to be migrated, reducing both

stream balancing and state migration costs, if any, in the consumers.

6.3.2.1 Migration Target

When selecting a target partition, Ptarget, for migrating a stream identified

by the key km ∈ K{M}, we follow the heuristic:

minδ δ = |(Rm +∑RPtarget)−Ravg| (6.3)

The partition, Ptarget, is chosen to minimize δ .

6.3.2.2 Stopping Condition

We stop migrating keys from the set K{M} when the following condition is

satisfied:

∀km ∈ K{M}∧∀target 6= source :

Rsource−Rtarget < |(Rtarget +Rm)− (Rsource−Rm)|
(6.4)

where Psource is the partition from which streams are being migrated. Thus

we stop migrating keys from Psource when migrating any partition from the

“underloaded set" will increase the absolute error function.

When migration candidates are not found, that partition is ignored even

if it has a higher than system average load. This can happen when the hot

keys mapped to this partition are too large and possibly has a stiff state

migration cost associated.

115

6.3.3 Stream Order

Asmentioned earlier, manymessaging system do not provide any message

ordering guarantees within the stream which allows them to use random

or round robin load balancing for all messages. For other messaging sys-

tems, migrating a stream from one partition to another violates the ordering

guarantees. Thus SMALOPS requires a generic mechanism for guarantee-

ing message ordering. For this purpose, we propose two mechanisms in

SMALOPS:

• A novel protocol that allows only the two consumers involved in the

migration to synchronize for maintaining message ordering.

• A subdivision of a stream called a "message set" that allow applications

downstream to reconstruct only the portions they need.

6.3.3.1 Message Sets

When talking about ordering, we are mainly interested in streams being

totally ordered. We mark each stream with a message set metadata. This

metadata is simply a numerical identifier that is incremented every time

the stream is migrated to a different partition, figure 6.3.

Message sets can be forwarded to downstream applications without

any processing in the consumers. This allows independent applications to

rebuild the stream from the message sets without any processing required at

the consumers. When the stream is migrated from a source to a destination

partition, this information is also embedded in the message set header,

figure 6.4.

When a partition is migrated from, say, partition 1 to partition 2, the

message set number is incremented and the source/destination partition

116

Figure 6.3: Message Sets

data is recorded in the header of the new message set that is being sent

to partition 2. This information can be used further downstream to stitch

the streams together. However, before the new message set is created and

sent, a last message with the updated migration information is sent to

current partition, and thus the current consumer (figure 6.5). Consumers

can choose to use this information to trigger the consumer-side partition

migration protocol or to pass it for the streams to be stitched together further

downstream.

In figure 6.3, we see that the "Key2" stream migrates from partition 3

to partition 1 and partition 2. In figure 6.5, the last message of the "Key2"

stream on partition 1 and the first message of the "Key2" stream on partition

2 have the exact same header. This indicates that the stream is migrating

from partition 1 to partition 2.

117

Figure 6.4: Message Set Header

6.3.3.2 Stream Ordering Protocol

This protocol works on the consumer side and describes a mechanism

for two consumers to synchronize between themselves to maintain message

ordering.

Figure 6.6 shows the timeline of the gateway and the two consumers, C1

and C2, involved in the migration. When the gateway decides to migrate key

K1 from consumer C1 (partition P1) to consumer C2 (partition P2), it sends

one last message to the consumer C1, denoted by LK1C1 in the diagram.

This message contains a new message set header, refer to figure 6.5, that

tells consumer C1 that the key is going to be migrated to consumer C2.

The next message, denoted by FK1C2, is then sent to consumer C2, which

determines that this stream has been migrated from consumer C1 from

the message set header. The new consumer C2, then queues any incoming

message belonging to key K1 in some internal structure. Once consumer C1

118

Figure 6.5: Message Set Migration

finishes processing the LK1C1 message, it sends notification, denoted by

PK1 to consumer C2. Once C2 receives this notification, it can immediately

start processing messages belonging to the key K1.

It is trivial to work out that in SMALOPS, the FK1C2 message is guaran-

teed to be processed earlier on C2 than it would have been on C1. According

to our stream balancing algorithm, described above, the conditions under

which the key K1 gets migrated to the consumer C2 from the consumer C1,

is when consumer C1 is more loaded than consumer C2. Thus the average

size of the queue on C2 is guaranteed to be smaller than the size of the

queue on C1.

In terms of queuing time on C2 for FK1C2, we have to consider two

different cases:

119

Figure 6.6: Consumer side protocol

• C2 receives FK1C2 before C1 receives LK1C1.

• C2 receives FK1C2 concurrently as C1 receives LK1C1.

In the second case, ignoring time required to send and receive PK1, max-

imum queuing time for FK1C2 on C2 is O(tmsg), the average time required to

process a message. In the first case, the maximum queuing time for FK1C2

on C2 is O(RC1−RC2), the difference in load between the two partitions.

However, since FK1C2 arrives at the system only after LK1C1, the effective

queuing time is still O(tmsg). Now it might be possible that we migrate K1

again from C2 to another partition while messages for K1 are still queued

on C2. Our propensity of migrating smaller keys, amongst the hot keys,

means there is some protection against too many messages queuing up

on C2 in the first place as 1/Rk j gets larger. For further protection against

this issue, SMALOPS makes migration decisions at discrete intervals only.

In choosing the interval for making migration decisions, we see that the

maximum queuing time of FK1C2 on C2 is O(tmsg) in all cases. As such

SMALOPS uses a decision making interval defined as Ctmsg where C is a

120

constant. In our design, we have chosen C such that Ctmsg is orders of

magnitudes greater than O(tmsg) for simplification (tmsg = 10ms and decision

making interval = 10seconds).

6.3.4 Stateful Consumers

SMALOPS also considers the fact that consumers may maintain local

application state, “appstate", associated with each stream. Migrating a

stream to a different partition probably migrates it to a different consumer as

well, potentially triggering an appstate migration. In such cases, SMALOPS

needs to be aware of the state migration costs. Let us consider an example.

Let us assume that processing time for a message from any stream is tmsg.

Let KP1 be the set of all keys whose messages are sent to partition P1 and thus

to the consumer C1. Also, let RKi be the incoming rate of key Ki ∈ KP1. Then

the processing and queueing time for a message belonging to the stream

identified by key K1 can be approximated by:

tmsg(1+(1− RK1

∑i RKi

))

where the last term is the waiting time given rate of incoming messages

belonging to the non-K1 keys.

Now let us consider if the stream identified by key K1 is migrated to

another partition P2 and thus consumer C2. Let KP2 be the existing set of

hot keys on partition P2 and RK j be the corresponding rates of incoming

messages. Thus the processing and queueing time for a message belonging

to the stream identified by key K1 on partition P2 can be approximated by:

tmsg(1+(1− 1
∑ j RK j

))

121

Finally, let the cost of migrating the appstate corresponding to key K1 be

tSM. Then migrating the stream makes sense only if,

tmsg(1+(1− RK1

∑i RKi

))> tSM + tmsg(1+(1− 1
∑ j RK j

)) (6.5)

There is a special case to be considered. If tSM = O(tmsg), then then

equation 6.5 reduces to RK1
∑i RKi

> 1
∑ j RKj

.

In order to handle local consumer state, the gateways need to track:

• Rate of incoming messages for all keys (on that gateway).

• Possibly also the cost of state migration and message processing

cost.

This tracking would significantly bloat the state stored in the gateways. This

state bloat can be completely avoided if the stream migrations are made at

discrete time intervals greater than some threshold that ensures that all

state migrations have completed before new migrations are started. Com-

bining our rational for selecting tthreshold from section 6.3.3.2 with our logic

described here, we define this threshold as tthreshold = Cmax(O(tSM),O(tmsg)),

where C is a constant. This threshold also allows SMALOPS tthreshold time to

recalculate the next migrations.

6.3.5 Hierarchical Gateways

In SMALOPS, we arrange the gateways in a hierarchical architecture

where the second layer gateways are arranged in a hash ring. The first level

server hashes the key and sends it to the second layer. This means that

messages in the same stream are always routed to the same second level

gateways. This allows us to avoid the following complexities:

122

• Distributed hot key detection.

• Distributed state as each gateways would need to know how to route

the hot keys.

The first level gateways route the messages using only a few metadata

and the key. Potentially this can be offloaded to virtual network functions,

like OpenNetVM [71], and programmable NICs.

6.3.6 State

SMALOPS gateways, independently, maintain a state in order to better

load balance hot keys. This state involves tracking each hot key in the system

and which partition it is mapped to. We sample the incoming streams, given

a sampling threshold (0.5 in our experiments), and send the sample to

the lossy counting algorithm. The algorithm works in discrete measuring

windows (buckets). During each bucket the algorithm maintains a list of

the keys seen during that bucket, the load associated with that key and the

bucket during which the key was first added. The algorithm then checks

if any of the keys are “heavy" according the pre-defined error and support

thresholds (0.01 and 0.001 in our experiments). At the start of each bucket,

we carry over a little history from the old bucket by continuing the keys that

are still heavy while dropping ones that are not “heavy" anymore from the

list. The algorithm also resets the number of messages seen to 0. These

two approaches allow us to determine keys that are hot during the current

bucket and to drop keys that are not hot anymore.

In a long running experiment where keys sending 100+ messages in

any counting window were defined as “hot" and |K| was defined to be 28M

(million), we found that our custom power-law, open-loop generator actually

123

used 3.2M keys while sending a total of 28M messages. Out of these 3.2M

keys, 14K (thousand) were detected as being “hot" over the course of the

experiment. These 14K keys accounted for 20M+ of the 28M total messages

sent by the generator. The SMALOPS gateway tracked no more than 1-1.5K

keys in any of their counting windows. Thus we can reasonably expect

SMALOPS to balance a significant portion, ∑
H
j=1 R jT
mcp

≈ 3
4 , of the load on the

messaging system while only maintaining a very small state, tracking only

∼0.05% of the number of keys seen. Here H is the number of hot keys in

the gateway, m is the number of partitions, R j is the size of each of the hot

keys, T is the weight threshold and cp is the average load generated by the

non-hot keys.

6.4 Implementation and Experimental Setup

Our experiments are based on testing the tail latencies involved inmessag-

ing systems delivering events to consumers. We use Kafka batch processing

as our baseline performance. Since we use a batch processing baseline,

there is a dependence on the time taken to process individual messages. For

our experiments, we assume every message takes the same processing time.

In this section we discuss some of the implementation details of SMALOPS

and the test cases that we are most interested in.

6.4.0.1 Custom Open Loop Load Generator

For this experiment, we needed a generator that would send traffic

consisting of several flows at a configurable rate. The generator also needed

to follow power-law distributions for selecting the key that identified the

flow. Unfortunately, we did not find a reliable, well-documented open-loop

generator with those characteristics. As such, we developed our own open

124

loop load generator. We used the zipf distribution to generate load due to its

prevalance in different workload like Twitter hashtags [72] and web caches

[73]. We define the zipf distribution as per k ∈ [0,numkeys] : P(k) ∝ (v+ k)−s,

where s > 1 and v≥ 1. Our generator uses s = 1.1 and v = 2.72 [74].

6.4.1 Hierarchical Gateways

We arranged our gateways into a two-layer hierarchy. The first layer of

gateways receive streams from our open loop generator. However, instead

of building a hash ring, the first level gateway maintains a map of streams

that have already been seen and mapped to a second level gateway. In case

a new stream is received, it is assigned to a second level gateway using the

round robin load balancing policy. Since we ensure that the gateways are

never the bottlenecks, we assume that this approach is indistinguishable

from a hash ring and other more advanced approaches for our purposes.

6.4.2 Second Level Gateway

We built the SMALOPS gateways from the ground up to enable us to

implement our algorithms with ease. The gateway handles all incoming

flows which allows it to track the hot flows and rebalance them according

load on the partitions. Each gateway locally tracks all hot keys, its “size" and

which partition that flow is mapped to. It also tracks all the partitions it has

outstanding hot flows on and the current load on each of those partitions.

SMALOPS gateways need some initial configuration to set up the system.

The primary amongst them is the threshold that identifies a hot flow. Any

flow with at least that number of messages in the counting window, also

configurable, is considered as hot and actively tracked.

The SMALOPS gateway implements the following mechanisms:

125

• Detect hot keys using the lossy counting algorithm.

• Calculate the size of each flow given the hot flow identifier threshold.

• Track the total size assigned to each partition from this gateway.

• Decide which flows to migrate and which target partition is best candi-

date to accept the flow.

• Finally, attach a metadata span with each message that can be later

used to identify time spent by each message within the messaging

system.

6.4.3 A Side Note on the implementation of the Lossy Counting Algo-

rithm

The lossy counting algorithm uses two parameters - support (s) and

error tolerance (ε). “Support", s, is a measure of how frequently an item is

seen while ε is the algorithm’s error tolerance of how accurately support

is measured (ε � s). In our experiments, we use the values s = 0.01 and

ε = 0.001. So our system tracks all keys that appear more than (s−ε)N times,

where N is the number of messages seen so far.

We deviate from the lossy counting algorithm in that we reset N after

every 1/ε messages. This is done so that SMALOPS can react quickly to

changes in load. This also helps SMALOPS to avoid tracking keys that were

hot in the past but not during the current window.

6.4.4 Control Plane

We also developed a simple control plane that uses the Kubernetes API

to monitor live endpoints for the second level gateway service. The first

126

level gateways make REST API calls to the control plane pods, which run

as a daemonSet in the Kubernetes cluster to populate their local service

directories.

6.4.5 Consumers

We have developed consumers that calculate a number in a predeter-

mined number of loops to mimic processing of messages. The consumers

also complete the Jaeger spans that allows us to identify the transmission

latency of each message.

6.5 Evaluation

6.5.1 Experimental Setup

We ran our experiments on cloudlab [52] servers. A Kubernetes cluster

was created with four Intel Xeon servers, each with 20 cores and 196GB

of memory. We then deployed our control plane that ran a pod on each of

the servers. These pods form the service that is queried to get information

about the backends of the gateway service running in the cluster.

We use an in-house power-law based open loop generator. We use the

tool to send requests to the gateway for a fixed amount of time (5 minutes)

where every request is part of a flow, identified by a key selected using the

Zipf distribution. We also experimented with messages without any key

metadata that could be routed on a per message basis to get a measure of

what an optimal performance on a single gateway might look like.

The core motivation for designing the experimental setup was to track

the queuing delay of individual events in Apache Kafka given a workload

that follows a power law distribution.

127

0.2 0.4 0.6 0.8 1.0
Queuing Delay Percentile

0

100

200

300

400

500

Ti
m

e(
se

co
nd

s)

473 seconds

124 seconds

Kafka
SMALOPS

Figure 6.7: Queuing Delay Comparison

6.5.2 SMALOPS Overall Performance

In our first experiment, we set a processing time of 50 microseconds for

each message on the consumers and compare the queuing delay distribution

achieved through Kafka and SMALOPS respectively. Here we see that

SMALOPS improves overall native Kafka performance, with the 99 %ile

queuing delay improving by 73%, figure 6.7.

We repeated this experiment varying consumer processing times between

10 and 50 microseconds. The comparison between the 99%ile queuing de-

lay can be seen in figure 6.8. We note that as the system starts getting

overloaded, the 99%ile latency of Kafka keeps increasing while the improve-

ments achieved by SMALOPS remain stable. The 99%ile improvement at 50

microseconds consumer processing time is 73% while the 99%ile queuing

delay improvement at 20 microseconds consumer processing time is 57%. In

our experiment, 50ms processing time/message was just before the system

is overloaded (tail latencies become really long).

128

10 20 30 40 50
Consumer Processing Time

(microseconds)

0

100

200

300

400

500

99
%

ile
 Q

ue
ui

ng
 D

el
ay

(s
ec

on
ds

)

SMALOPS
Kafka

Figure 6.8: 99%ile Queuing Delay Comparison

Furthermore, we see that as the system starts getting overloaded, Kafka’s

performance start degrading earlier. For example, for a 20 microseconds

consumer processing time, the performance of Kafka and SMALOPS are

indistinguishable till 90%ile latency. However, for a 50 microseconds

consumer processing time, Kafka starts degrading around the 50%ile mark

while SMALOPS’s performance remains nearly identical. This comparison

between the performances of SMALOPS and Kafka can be seen in Figure

6.9.

In figure 6.10 we experiment with the threshold, as a percentage of

total number of messages, to be used to classify a flow as “heavy". We see

that when we classify flows that account for 10% or more of the messages

received as “heavy", SMALOPS’ tail latency drops sharply. We also see that

further increasing the threshold has no significant impact on our results.

Rather keeping this threshold as low as possible allows us to keep the

number of keys being tracked lower.

129

0.2 0.4 0.6 0.8 1.0
Queuing Delay Percentile

0

10

20

30

40

50

Ti
m

e(
se

co
nd

s)

42 seconds

18 seconds

Kafka
SMALOPS

(a) Queuing Delay Distribution Improvement at 20 µs

0.2 0.4 0.6 0.8 1.0
Queuing Delay Percentile

0

100

200

300

400

500

Ti
m

e(
se

co
nd

s)

473 seconds

124 seconds

Kafka
SMALOPS

(b) Queuing Delay Distribution Improvement at 50 µs

Figure 6.9: Performance improvement with SMALOPS is realised earlier

130

3 5 10 30 40 50
Heavy Flow Threshold Percent of Total Request

0

2

4

6

8

10

99
%

ile
 Q

ue
ui

ng
 D

el
ay

(s
ec

on
ds

)

SMALOPS

Figure 6.10: Impact of Threshold Definition on Latency

Finally, we ran SMALOPS against “dynamic load", where the load is

generated by shifting the keys through our zipf based generator every minute.

This ensures that:

• A few new streams are introduced to the system regularly.

• A few streams stop altogether.

• Load on remaining streams change.

Figure 6.11 shows that SMALOPS can significantly improve streaming

system performance even in the face of these new challenges. Each message

in this experiment takes 20ms to be processed.

6.6 Related Work

Load balancing is a well known problem that has been extensively studied

for a long time. Advent of modern distributed systems has renewed interest

131

0.2 0.4 0.6 0.8 1.0
Queuing Delay Percentile

0

10

20

30

40

50

60

70

Ti
m

e(
se

co
nd

s)

66 seconds

39 seconds

Kafka
SMALOPS

Figure 6.11: Kafka vs SMALOPS under dynamic load conditions

in the area. Load balancing in the topic based pub-sub systems like Apache

Kafka have generally been in two forms:

• Balance the partitions themselves within the brokers [75].

• Assign topics to partitions as the topics enter the system [76], [37].

• Build overlay networks [77], [78] to connect relevant nodes directly.

Gedik et al, [13], have used the lossy algorithm to track heavier flows

and map those to partition explicitly. Other flows are mapped using the

consistent hash function. This work is probably the most similar to ours.

They use three lossy counters over tumbling windows to emulate a sliding

window whereas we only use a single lossy counter over strictly demarcated

window.

Nasir et al, [14], has proposed PKG that uses power of two random choices

to map each key to the least loaded partition selected by two different hash

132

functions. This results in every flow, heavy and otherwise, being in a split

state that requires reconciliation.

Finally, Rivetti et al, [15], proposed DKG that learns the distribution of

the keys before using a global mapping function to achieve near-optimal

load assignment. They map non-heavy keys to “buckets", where the number

of buckets is user-defined and larger than the number of partitions, using

a random hash function from two separate hash function families. Their

solution maps the heavier flows, identified by the space saving algorithm,

explicitly to specific partitions.

SMALOPS extends existing research in fundamental ways:

• SMALOPS only tracks and load balances only the heavy hitters since

with the zipfian distribution the majority of the system load come from

a small number of heavier flows.

• SMALOPS focuses on dynamic workload distributions in two important

ways:

– SMALOPS accounts for the fact that different keys produce heavy

streams at different times.

– SMALOPS realizes that not every heavy hitter is active at the same

time. This allows SMALOPS to significantly reduce the number of

flows it is tracking.

• SMALOPS balances the gains from migrating streams against the cost

of rebuilding stream state or migrating applications state.

133

6.7 Conclusions and Future Work

In this paper we propose a load balancing strategy for streaming systems

that is able to deal with dynamic changes in the incoming streams. We argue

that current streaming systems are ill-equipped to increasingly real-time

requirements of modern applications. Current research assumes load on

streaming systems to be static.

In contrast, SMALOPS significantly improves load imbalance in stream-

ing systems. To the best of our knowledge, SMALOPS is the first system to

consider dynamic input load and propose a generalized split state reconcili-

ation. For our future work, we plan to expand on the generalized split state

reconciliation.

We realized that the system, may be shifting around a lot of flows unnec-

essarily, “load thrashing", due to our definition of load imbalance, equation

(6.2). This is because even an infinitesimal value for ELB can trigger a flow

redistribution phase. Hence we built a third variant of SMALOPS, that

defines a new parameter, tol, as a load imbalance tolerance threshold and

change equation (6.2) to

ELB = ∑
j
|RPj −Ravg|> tol (6.6)

Our experiments show that in this case the performance of this variant

fails to improve over the performance of SMALOPS. However, this may be

due to small measuring window sizes and is a possible direction to explore

in our future work.

Acknowledgements: This work was supported in part by NSF Grant

CNS-1837382.

134

Chapter 7: Thesis Conclusion

7.1 Summary

In our work, we have explored two main themes regarding load balancing

in distributed systems (microservice based). The first was to challenge an

established perception that load balancing as a research topic has been

thoroughly explored. The second is to show that intelligent load balancing

can be a great tool to build partially synchronous networks that are required

by a class of modern applications. The latter, however, also breaks certain

guarantees regarding message ordering. This prompts our work to also

discuss certain aspects of generic split state reconciliations of ordered

message flows or streams.

We found that for server-client based applications, the norm is to adapt

traditional load balancing algorithms with established good performance

metrics to the microservices world. Our search found no study into the the

efficacy of these adaptations in microservices. Most contemporary research,

like [33], [32] etc, that we found tackled the problem of building efficient load

balancing frameworks using established algorithms. However, in doing so we

felt most of them made assumptions that should be researched themselves.

In our work, we focused on two main issues that arise when applications

transcend over to microservices architectures from the monolithic world:

• When using distributed client side load balancers, none of the load

balancers are aware of the server queues anymore.

• In certain scenarios, the different servers have different service capac-

ities.

135

In our research, we have tackled both these problems from a systems

perspective by showing how simple feedback mechanisms along with proper

handling of stale information can automatically account for both loss of

a central source of truth and differing service capacities in the backend

systems. Our techniques, not only help load balancers outperform contem-

porary benchmarks, it also demonstrates a strong need to further investigate

load balancing in microservices architectures.

In case of asynchronous applications, only rudimentary algorithms like

random, round robin or hashing are used in the industry. More often than

not, the primary focus of these systems are persistence and/or ordering of

the messages. Though there have been research into more advanced load

balancing algorithms, they have mostly assumed a static load profile for

the lifetime of the system. Our research demonstrates that it is possible to

build systems that successfully track and load balance high density streams

without tying up an inordinate amount of system resources and achieve

significant gains in message delivery times. However, these gains come at

the cost of splitting the streams into different partitions. Thus our research

also discusses schemes that would enable reconciliation of these streams.

7.2 Future Work

We believe that there is much work that need to be done to establish the

exact characteristics of load balancing in these modern systems. We believe

the following areas to most likely have most impact on distributed client

side load balancing research:

• mechanisms that effectively share state between client-side load bal-

ancers enabling them to make better decisions.

136

• mechanisms to characterize and track workloads with judicious use of

system resources.

• explore efficient means of reconciling split state in message streams

that result from migrating streams to remove hot spots.

137

Bibliography

[1] Production-Grade Container Orchestration. Kubernetes. [Online].
Available: https://kubernetes.io/

[2] Home - Knative. [Online]. Available: https://knative.dev/docs/

[3] Envoy Proxy - Home. [Online]. Available: https://www.envoyproxy.io/

[4] Istio. Istio. [Online]. Available: https://istio.io/latest/

[5] The world’s lightest, fastest service mesh. | Linkerd. [Online]. Available:
https://linkerd.io/

[6] Top 10 Companies Using Cloud and Why | Cus-
tomerThink. [Online]. Available: https://customerthink.com/
top-10-companies-using-cloud-and-why/

[7] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and A. Belay,
“Overload control for {µs-scale} {RPCs} with breakwater,” pp. 299–
314. [Online]. Available: https://www.usenix.org/conference/osdi20/
presentation/cho

[8] V. Mittal, S. Qi, R. Bhattacharya, X. Lyu, J. Li, S. G. Kulkarni, D. Li,
J. Hwang, K. K. Ramakrishnan, and T. Wood, “Mu: An efficient, fair
and responsive serverless framework for resource-constrained edge
clouds,” in Proceedings of the ACM Symposium on Cloud Computing,
ser. SoCC ’21. Association for Computing Machinery, pp. 168–181.
[Online]. Available: https://doi.org/10.1145/3472883.3487014

[9] R. Bhattacharya and T. Wood, “BLOC: Balancing Load with Overload
Control In the Microservices Architecture,” in 2022 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS), pp. 91–100.

[10] ——, “Load Balancing and Generalized Split State Reconciliation in
Stream Processing Systems,” vol. Under Review @ IEEE ACSOS 2024.

[11] M. Mitzenmacher, “The power of two choices in randomized load bal-
ancing,” vol. 12, no. 10, pp. 1094–1104.

[12] R. Bhattacharya, Y. Gao, and T. Wood, “Dynamically Balancing Load
with Overload Control for Microservices,” vol. Accepted @ ACM Trans-
actions on Autonomous and Adaptive Systems.

[13] B. Gedik, “Partitioning functions for stateful data parallelism in
stream processing,” vol. 23, no. 4, pp. 517–539. [Online]. Available:
https://dl.acm.org/doi/10.1007/s00778-013-0335-9

138

https://kubernetes.io/
https://knative.dev/docs/
https://www.envoyproxy.io/
https://istio.io/latest/
https://linkerd.io/
https://customerthink.com/top-10-companies-using-cloud-and-why/
https://customerthink.com/top-10-companies-using-cloud-and-why/
https://www.usenix.org/conference/osdi20/presentation/cho
https://www.usenix.org/conference/osdi20/presentation/cho
https://doi.org/10.1145/3472883.3487014
https://dl.acm.org/doi/10.1007/s00778-013-0335-9

[14] M. A. U. Nasir, G. De Francisci Morales, D. García-Soriano, N. Kourtellis,
and M. Serafini, “The power of both choices: Practical load balancing for
distributed stream processing engines,” in 2015 IEEE 31st International
Conference on Data Engineering, pp. 137–148.

[15] N. Rivetti, L. Querzoni, E. Anceaume, Y. Busnel, and B. Sericola,
“Efficient key grouping for near-optimal load balancing in stream
processing systems,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’15.
Association for Computing Machinery, pp. 80–91. [Online]. Available:
https://dl.acm.org/doi/10.1145/2675743.2771827

[16] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, “Emerging Trends,
Techniques and Open Issues of Containerization: A Review,” vol. 7, pp.
152443–152472.

[17] Docker: Accelerated Container Application Development. [Online].
Available: https://www.docker.com/

[18] Linux.org. [Online]. Available: https://www.linux.org/

[19] Network_namespaces(7) - Linux manual page. [Online]. Available: https:
//man7.org/linux/man-pages/man7/network_namespaces.7.html

[20] Better Load Balancing: Real-Time Dynamic Subsetting.
Uber Blog. [Online]. Available: https://www.uber.com/blog/
better-load-balancing-real-time-dynamic-subsetting/

[21] W. Vogels, “Eventually consistent,” vol. 52, no. 1, pp. 40–44. [Online].
Available: https://dl.acm.org/doi/10.1145/1435417.1435432

[22] Apache Kafka. Apache Kafka. [Online]. Available: https://kafka.
apache.org/

[23] NSQ Docs 1.2.1 - A realtime distributed messaging platform. [Online].
Available: https://nsq.io/

[24] Effective Strategies for Kafka Topic Partitioning | New Relic.
[Online]. Available: https://newrelic.com/blog/best-practices/
effective-strategies-kafka-topic-partitioning

[25] Building an Adaptive, Multi-Tenant Stream Bus with
Kafka and Golang | by Xinyu Liu | Lyft En-
gineering. [Online]. Available: https://eng.lyft.com/
building-an-adaptive-multi-tenant-stream-bus-with-kafka-and-golang-5f1410bf2b40

[26] Messaging that just works — RabbitMQ. [Online]. Available:
https://www.rabbitmq.com/

139

https://dl.acm.org/doi/10.1145/2675743.2771827
https://www.docker.com/
https://www.linux.org/
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://www.uber.com/blog/better-load-balancing-real-time-dynamic-subsetting/
https://www.uber.com/blog/better-load-balancing-real-time-dynamic-subsetting/
https://dl.acm.org/doi/10.1145/1435417.1435432
https://kafka.apache.org/
https://kafka.apache.org/
https://nsq.io/
https://newrelic.com/blog/best-practices/effective-strategies-kafka-topic-partitioning
https://newrelic.com/blog/best-practices/effective-strategies-kafka-topic-partitioning
https://eng.lyft.com/building-an-adaptive-multi-tenant-stream-bus-with-kafka-and-golang-5f1410bf2b40
https://eng.lyft.com/building-an-adaptive-multi-tenant-stream-bus-with-kafka-and-golang-5f1410bf2b40
https://www.rabbitmq.com/

[27] RabbitMQ tutorial - Work Queues — RabbitMQ. [Online]. Available:
https://www.rabbitmq.com/tutorials/tutorial-two-go.html

[28] K. Gilly, C. Juiz, and R. Puigjaner, “An up-to-date survey in web
load balancing,” vol. 14, no. 2, pp. 105–131. [Online]. Available:
https://doi.org/10.1007/s11280-010-0101-5

[29] V. Gupta, M. Harchol Balter, K. Sigman, and W. Whitt, “Analysis of
join-the-shortest-queue routing for web server farms,” vol. 64, no. 9,
pp. 1062–1081. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0166531607000624

[30] Examining Load Balancing Algorithms with Envoy | by Tony Allen
| Envoy Proxy. [Online]. Available: https://blog.envoyproxy.io/
examining-load-balancing-algorithms-with-envoy-1be643ea121c

[31] P. Kumar and R. Kumar, “Issues and Challenges of Load Balancing
Techniques in Cloud Computing: A Survey,” vol. 51, no. 6, pp.
120:1–120:35. [Online]. Available: https://doi.org/10.1145/3281010

[32] A. Gandhi, X. Zhang, and N. Mittal, “HALO: Heterogeneity-Aware Load
Balancing,” in 2015 IEEE 23rd International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems,
pp. 242–251.

[33] Cheetah: A High-Speed Programmable Load-Balancer Framework
With Guaranteed Per-Connection-Consistency | IEEE Journals &
Magazine | IEEE Xplore. [Online]. Available: https://ieeexplore.ieee.
org/document/9552525

[34] N. T. Blog. Rethinking Netflix’s Edge Load Balanc-
ing. Medium. [Online]. Available: https://netflixtechblog.com/
netflix-edge-load-balancing-695308b5548c

[35] S. T and S. N. K. A study on Modern Messaging Systems-
Kafka, RabbitMQ and NATS Streaming. [Online]. Available: http:
//arxiv.org/abs/1912.03715

[36] A. K. Y. Cheung and H.-A. Jacobsen, “Load Balancing Content-Based
Publish/Subscribe Systems,” vol. 28, no. 4, pp. 9:1–9:55. [Online].
Available: https://doi.org/10.1145/1880018.1880020

[37] D. Dedousis, N. Zacheilas, and V. Kalogeraki, “On the Fly Load Balanc-
ing to Address Hot Topics in Topic-Based Pub/Sub Systems,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 76–86.

140

https://www.rabbitmq.com/tutorials/tutorial-two-go.html
https://doi.org/10.1007/s11280-010-0101-5
https://www.sciencedirect.com/science/article/pii/S0166531607000624
https://www.sciencedirect.com/science/article/pii/S0166531607000624
https://blog.envoyproxy.io/examining-load-balancing-algorithms-with-envoy-1be643ea121c
https://blog.envoyproxy.io/examining-load-balancing-algorithms-with-envoy-1be643ea121c
https://doi.org/10.1145/3281010
https://ieeexplore.ieee.org/document/9552525
https://ieeexplore.ieee.org/document/9552525
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
http://arxiv.org/abs/1912.03715
http://arxiv.org/abs/1912.03715
https://doi.org/10.1145/1880018.1880020

[38] H. Wu, Z. Shang, and K. Wolter, “Performance Prediction for the Apache
Kafka Messaging System,” in 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th Inter-
national Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), pp. 154–161.

[39] D. Landau, X. Andrade, and J. G. Barbosa. Kafka Consumer Group
Autoscaler. [Online]. Available: http://arxiv.org/abs/2206.11170

[40] M. Shahrad, R. Fonseca, Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the Wild: Characterizing and Optimizing the Serverless
Workload at a Large Cloud Provider,” pp. 205–218. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

[41] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On Multi-Access Edge Computing: A Survey of the
Emerging 5G Network Edge Cloud Architecture and Orchestration,”
vol. 19, no. 3, pp. 1657–1681. [Online]. Available: https:
//doi.org/10.1109/COMST.2017.2705720

[42] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase
of cloud computing,” vol. 64, no. 5, pp. 76–84. [Online]. Available:
https://dl.acm.org/doi/10.1145/3406011

[43] G. McGrath and P. R. Brenner, “Serverless Computing: Design,
Implementation, and Performance,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW), pp.
405–410. [Online]. Available: https://ieeexplore.ieee.org/document/
7979855

[44] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC
’18. USENIX Association, pp. 133–145.

[45] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless Computing: An Investigation of Factors Influencing
Microservice Performance,” in 2018 IEEE International Conference
on Cloud Engineering (IC2E), pp. 159–169. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8360324

[46] How does language, memory and package size af-
fect cold starts of AWS Lambda? [Online]. Avail-
able: https://www.pluralsight.com/resources/blog/cloud/
does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda

141

http://arxiv.org/abs/2206.11170
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/COMST.2017.2705720
https://dl.acm.org/doi/10.1145/3406011
https://ieeexplore.ieee.org/document/7979855
https://ieeexplore.ieee.org/document/7979855
https://ieeexplore.ieee.org/abstract/document/8360324
https://www.pluralsight.com/resources/blog/cloud/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda
https://www.pluralsight.com/resources/blog/cloud/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda

[47] S. K. Mohanty, G. Premsankar, and p. u. family=Francesco,
given=Mario, “An Evaluation of Open Source Serverless Computing
Frameworks,” in 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 115–120. [Online].
Available: https://ieeexplore.ieee.org/document/8591002

[48] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Understanding
Open Source Serverless Platforms: Design Considerations and
Performance,” in Proceedings of the 5th International Workshop on
Serverless Computing, ser. WOSC ’19. Association for Computing
Machinery, pp. 37–42. [Online]. Available: https://dl.acm.org/doi/10.
1145/3366623.3368139

[49] A. Palade, A. Kazmi, and S. Clarke, “An Evaluation of Open Source
Serverless Computing Frameworks Support at the Edge,” in 2019 IEEE
World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211.
[Online]. Available: https://ieeexplore.ieee.org/document/8817155

[50] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
Association for Computing Machinery, pp. 13–16. [Online]. Available:
https://dl.acm.org/doi/10.1145/2342509.2342513

[51] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,
“Cloudlets: At the leading edge of mobile-cloud convergence,” in
6th International Conference on Mobile Computing, Applications and
Services, pp. 1–9. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/7026272

[52] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart,
L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra,
“The Design and Operation of {CloudLab},” pp. 1–14. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/duplyakin

[53] “BLOCProxy Performance,” MSrvComm. [Online]. Available: https:
//github.com/MSrvComm/Experiments

[54] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.

142

https://ieeexplore.ieee.org/document/8591002
https://dl.acm.org/doi/10.1145/3366623.3368139
https://dl.acm.org/doi/10.1145/3366623.3368139
https://ieeexplore.ieee.org/document/8817155
https://dl.acm.org/doi/10.1145/2342509.2342513
https://ieeexplore.ieee.org/abstract/document/7026272
https://ieeexplore.ieee.org/abstract/document/7026272
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://github.com/MSrvComm/Experiments
https://github.com/MSrvComm/Experiments

Association for Computing Machinery, pp. 3–18. [Online]. Available:
https://dl.acm.org/doi/10.1145/3297858.3304013

[55] Amazon Web Services, “AWS re:Invent 2015: A Day in the Life
of a Netflix Engineer (DVO203),” Oct. 2015. [Online]. Available:
https://www.youtube.com/watch?v=-mL3zT1iIKw

[56] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter
networks,” in Proceedings of the 1st ACM Workshop on Research on
Enterprise Networking, ser. WREN ’09. Association for Computing
Machinery, pp. 73–82. [Online]. Available: https://dl.acm.org/doi/10.
1145/1592681.1592693

[57] P. Berenbrink, A. Czumaj, and A. Steger, “Balanced Allocations: The
Heavily Loaded Case.”

[58] M. Raab and A. Steger, ““Balls into Bins” — A Simple and Tight
Analysis,” in Randomization and Approximation Techniques in Computer
Science, M. Luby, J. D. P. Rolim, and M. Serna, Eds. Springer
Berlin Heidelberg, vol. 1518, pp. 159–170. [Online]. Available:
http://link.springer.com/10.1007/3-540-49543-6_13

[59] J. Dogan, “hey - open loop load generator,” original-date: 2016-09-
02T10:24:09Z. [Online]. Available: https://github.com/rakyll/hey

[60] Custom loadtest: Open loop poisson load generator. [Online]. Available:
https://github.com/lyuxiaosu/loadtest

[61] M. Autili, A. Perucci, and L. De Lauretis, “A hybrid approach to mi-
croservices load balancing,” Microservices: Science and Engineering,
pp. 249–269, 2020.

[62] H. Adkins, B. Beyer, P. Blankinship, P. Lewandowski, A. Oprea, and
A. Stubblefield, “Building secure and reliable systems,” p. 557.

[63] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock
in an interrupt-driven kernel,” vol. 15, no. 3, pp. 217–252. [Online].
Available: https://doi.org/10.1145/263326.263335

[64] T. P. Raptis and A. Passarella, “A Survey on Networked Data Streaming
With Apache Kafka,” vol. 11, pp. 85333–85350. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10213406

[65] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen,
and V. Markl, “Benchmarking Distributed Stream Data Processing
Systems,” in 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pp. 1507–1518. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8509390

143

https://dl.acm.org/doi/10.1145/3297858.3304013
https://www.youtube.com/watch?v=-mL3zT1iIKw
https://dl.acm.org/doi/10.1145/1592681.1592693
https://dl.acm.org/doi/10.1145/1592681.1592693
http://link.springer.com/10.1007/3-540-49543-6_13
https://github.com/rakyll/hey
https://github.com/lyuxiaosu/loadtest
https://doi.org/10.1145/263326.263335
https://ieeexplore.ieee.org/abstract/document/10213406
https://ieeexplore.ieee.org/abstract/document/8509390
https://ieeexplore.ieee.org/abstract/document/8509390

[66] B. Feldmann. Solving my weird Kafka Rebalancing Prob-
lems. bakdata. [Online]. Available: https://medium.com/bakdata/
solving-my-weird-kafka-rebalancing-problems-c05e99535435

[67] G. S. Manku and R. Motwani, “Approximate frequency counts
over data streams,” vol. 5, no. 12, p. 1699. [Online]. Available:
https://doi.org/10.14778/2367502.2367508

[68] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding Persistent
Items in Distributed Datasets,” vol. 28, no. 1, pp. 1–14. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8935435

[69] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding
(recently) frequent items in distributed data streams,” in 21st
International Conference on Data Engineering (ICDE’05), pp. 767–778.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/
1410191

[70] R. Lösch, J. Schmidt, and N. G. Felde, “Weighted Load Balancing
in Distributed Hash Tables,” in Proceedings of the 21st International
Conference on Information Integration and Web-based Applications
& Services, ser. iiWAS2019. Association for Computing Machinery,
pp. 473–482. [Online]. Available: https://doi.org/10.1145/3366030.
3366069

[71] “openNetVM,” sdnfv. [Online]. Available: https://github.com/sdnfv/
openNetVM

[72] J. A. Pérez Melián, J. A. Conejero, and C. Ferri Ramírez, “Zipf’s
and Benford’s laws in Twitter hashtags,” in Proceedings of the
Student Research Workshop at the 15th Conference of the European
Chapter of the Association for Computational Linguistics, F. Kunneman,
U. Iñurrieta, J. J. Camilleri, and M. C. Ardanuy, Eds. Association
for Computational Linguistics, pp. 84–93. [Online]. Available:
https://aclanthology.org/E17-4009

[73] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and Zipf-like distributions: Evidence and implications,”
in IEEE INFOCOM ’99. Conference on Computer Communications.
Proceedings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future Is Now (Cat.
No.99CH36320), vol. 1, pp. 126–134 vol.1. [Online]. Available:
https://ieeexplore.ieee.org/document/749260

[74] S. T. Piantadosi, “Zipf’s word frequency law in natural language: A
critical review and future directions,” vol. 21, no. 5, pp. 1112–1130.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4176592/

144

https://medium.com/bakdata/solving-my-weird-kafka-rebalancing-problems-c05e99535435
https://medium.com/bakdata/solving-my-weird-kafka-rebalancing-problems-c05e99535435
https://doi.org/10.14778/2367502.2367508
https://ieeexplore.ieee.org/abstract/document/8935435
https://ieeexplore.ieee.org/abstract/document/1410191
https://ieeexplore.ieee.org/abstract/document/1410191
https://doi.org/10.1145/3366030.3366069
https://doi.org/10.1145/3366030.3366069
https://github.com/sdnfv/openNetVM
https://github.com/sdnfv/openNetVM
https://aclanthology.org/E17-4009
https://ieeexplore.ieee.org/document/749260
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176592/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176592/

[75] D. . Burato, “Load balancing and fault early detection for Apache
Kafka clusters.” [Online]. Available: http://dspace.unive.it/handle/
10579/15159

[76] T. P. Raptis and A. Passarella, “On Efficiently Partitioning a Topic
in Apache Kafka,” in 2022 International Conference on Computer,
Information and Telecommunication Systems (CITS), pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9832981

[77] C. Chen, H.-A. Jacobsen, and R. Vitenberg, “Algorithms Based
on Divide and Conquer for Topic-Based Publish/Subscribe Overlay
Design,” vol. 24, no. 1, pp. 422–436. [Online]. Available: https:
//ieeexplore.ieee.org/document/6971250

[78] V. Turau and G. Siegemund, “Scalable Routing for Topic-Based
Publish/Subscribe Systems Under Fluctuations,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), pp.
1608–1617. [Online]. Available: https://ieeexplore.ieee.org/document/
7980098

145

http://dspace.unive.it/handle/10579/15159
http://dspace.unive.it/handle/10579/15159
https://ieeexplore.ieee.org/abstract/document/9832981
https://ieeexplore.ieee.org/document/6971250
https://ieeexplore.ieee.org/document/6971250
https://ieeexplore.ieee.org/document/7980098
https://ieeexplore.ieee.org/document/7980098

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	Preface
	Introduction
	Background Knowledge
	Microservices Architecture
	Service Mesh
	Event Driven Architecture

	Projects
	Mu: An Ingress Load Balancer
	BLOC: A sidecare Load Balancer
	SMALOPS: A Load Balancer for Asynchronous Applications

	Background
	Microservices
	Centralized Load Balancing vs Distributed Client Side Load Balancing

	Optimal Centralized Load Balancing
	Microservice Communication Patterns

	Asynchronous Communication

	Related Work
	Load Balancing for Synchronous Services
	Load Balancing for Asynchronous Services

	Mu: Ingress Load Balancing in Edge Systems
	Introduction
	Background
	System Design
	Metrics
	Load Balancer
	Load Balancer Algorithm

	Evaluation
	Overall Mu Performance

	BLOC: Balancing Load with Overload Control in Microservices Architectures
	Introduction
	Background
	Least Connection Analysis
	System Design
	Confidence Chips
	Client Side Backoff and Retries
	Server Selection
	Server Capacity

	Implementation and Experimental Setup
	Customizable Microservice Generation
	Sidecar Proxies
	Control Plane
	Test Bed Setup
	Workload

	Evaluation
	Experimental Setup
	BLOC Overall Performance
	Benefits of Different BLOC Components
	BLOC Under Bursty Workloads
	Handling of New Resources
	A Real Variable Cost Backend Application
	Low Backend Service Cost
	BLOC vs Least Connection for a complete microservices chain
	Impact of BLOC Parameters
	BLOC Performance with Variable Service Cost

	Related Work
	Load Balancing
	Overload Control
	Load Balancing with Server Feedback

	Conclusions

	Load Balancing and Generalized Split State Reconciliation in Event Driven Systems
	Introduction
	Background and Motivation
	System Design
	Hot Key Analysis
	Stream Balancing
	Migration Target
	Stopping Condition

	Stream Order
	Message Sets
	Stream Ordering Protocol

	Stateful Consumers
	Hierarchical Gateways
	State

	Implementation and Experimental Setup
	Custom Open Loop Load Generator
	Hierarchical Gateways
	Second Level Gateway
	A Side Note on the implementation of the Lossy Counting Algorithm
	Control Plane
	Consumers

	Evaluation
	Experimental Setup
	SMALOPS Overall Performance

	Related Work
	Conclusions and Future Work

	Thesis Conclusion
	Summary
	Future Work

	Bibliography

